1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The height at which the weight of the body becomes $\frac{1^{\text {th }}}{16}$ of its weight on the surface of the earth of radius ' $R$ ' is

A
2 R
B
3 R
C
4 R
D
5 R
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Two identical metal spheres are kept in contact with each other, each having radius ' $R$ ' cm and ' $\rho$ ' is the density of material of metal spheres. The gravitational force ' $F$ ' of attraction between them is proportional to

A
$\mathrm{R}^3 \rho$
B
$R^4 \rho^2$
C
$R^4 \rho$
D
$\mathrm{R}^3 p^2$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The distance of the two planets A and B from the sun are $r_A$ and $r_B$ respectively. Also $r_B$ is equal to $100 r_A$. If the orbital speed of the planet $A$ is ' $v$ ' then the orbital speed of the planet B is

A
$\frac{\mathrm{v}}{10}$
B
$\frac{v}{2}$
C
$ \sqrt{2} v$
D
10 v
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Earth has mass ' $M_1$ ' radius ' $R_1$ ' and for moon mass ' $M_2$ ' and radius ' $R_2$ '. Distance between their centres is ' $r$ '. A body of mass ' $M$ ' is placed on the line joining them at a distance $\frac{\mathrm{r}}{3}$ from the centre of the earth. To project a mass ' $M$ ' to escape to infinity, the minimum speed required is

A
$\left[\frac{2 G}{r}\left(M_2+\frac{M_1}{2}\right)\right]^{1 / 2}$
B
$\left[\frac{4 \mathrm{G}}{\mathrm{r}}\left(\mathrm{M}_1+\frac{\mathrm{M}_2}{2}\right)\right]^{1 / 2}$
C
$\left[\frac{3 G}{r}\left(M_1+M_2\right)\right]^{1 / 2}$
D
$\left[\frac{6 G}{r}\left(M_1+\frac{M_2}{2}\right)\right]^{1 / 2}$
MHT CET Subjects
EXAM MAP