The area of the rectangle having vertices $\mathrm{P}, \quad \mathrm{Q}, \quad \mathrm{R}, \quad \mathrm{S}$ with position vectors $-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}},-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ respectively is
If $\bar{a}, \bar{b}, \bar{c}$ are three vectors such that $|\overrightarrow{\mathrm{a}}|=\sqrt{31}, 4|\overrightarrow{\mathrm{~b}}|=|\overrightarrow{\mathrm{c}}|=2$ and $2(\overline{\mathrm{a}} \times \overline{\mathrm{b}})=3(\overline{\mathrm{c}} \times \overline{\mathrm{a}})$ and if the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{2 \pi}{3}$ then $\left|\frac{\bar{a} \times \bar{c}}{\bar{a} \cdot \bar{b}}\right|^2=$
Let $\bar{a}=2 \hat{i}+\hat{j}+\hat{k}, \bar{b}=\hat{i}+2 \hat{j}-\hat{k}$ and vector $\bar{c}$ be coplanar. If $\bar{c}$ is perpendicular to $\bar{a}$, then $\bar{c}$ is
The number of integral values of $p$ for which the vectors $(p+1) \hat{i}-3 \hat{j}+p \hat{k}, p \hat{i}+(p+1) \hat{j}-3 \hat{k}$ and $-3 \hat{\mathrm{i}}+\mathrm{p} \hat{\mathrm{j}}+(\mathrm{p}+1) \hat{\mathrm{k}}$ are linearly dependent vectors, are