1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow \frac{\pi}{2}} \frac{(1-\sin x)\left(8 x^3-\pi^3\right) \cos x}{(\pi-2 x)^4}$$

A
$\frac{\pi^2}{16}$
B
$\frac{3 \pi^2}{16}$
C
$\frac{-3 \pi^2}{16}$
D
$\frac{-\pi^2}{16}$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=x\left[\frac{x}{2}\right]$, for $-10< x<10$, where $[t]$ denotes the greatest integer function. Then the number of points of discontinuity of $f$ is equal to

A
10
B
9
C
6
D
8
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\lim\limits_{x \rightarrow \infty}\left(\frac{x^2+x+1}{x+1}-a x-b\right)=4$ then

A
$\mathrm{a}=1, \mathrm{~b}=4$
B
$\mathrm{a}=1, \mathrm{~b}=-4$
C
$\mathrm{a}=2, \mathrm{~b}=-3$
D
$\mathrm{a}=2, \mathrm{~b}=3$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let k be a non-zero real number. If $f(x)=\left\{\begin{array}{cl}\frac{\left(\mathrm{e}^x-1\right)^2}{\sin \left(\frac{x}{k}\right) \log \left(1+\frac{x}{4}\right)} & , x \neq 0 \\ 12 & , x=0\end{array}\right.$ is a continuous function, then the value of $k$ is

A
1
B
2
C
4
D
3
MHT CET Subjects
EXAM MAP