1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow 2} \frac{3^x+3^{3-x}-12}{3^{3-x}-3^{\frac{x}{2}}}=$$

A
$-\frac{4}{3}$
B
$\frac{4}{3}$
C
$\frac{2}{3}$
D
$-\frac{4}{9}$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $f:[-1,3] \rightarrow \mathbb{R}$ be defined as

$$\left\{\begin{array}{lc} |x|+[x], & -1 \leqslant x<1 \\ x+|x|, & 1 \leqslant x<2 \\ x+[x], & 2 \leqslant x \leqslant 3 \end{array}\right.$$

where $[t]$ denotes the greatest integer function. Then $f$ is discontinuous at

A
only two points
B
only three points
C
four or more points
D
only one point
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow \frac{\pi}{2}} \frac{\left(1-\tan \left(\frac{x}{2}\right)\right)(1-\sin x)}{\left(1+\tan \left(\frac{x}{2}\right)\right)(\pi-2 x)^3}$$ is

A
0
B
$\frac{1}{32}$
C
$\frac{1}{8}$
D
$\frac{1}{16}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\lim _\limits{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^2}$ is

A
2
B
$-$2
C
$\frac{1}{2}$
D
$-\frac{1}{2}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12