1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f$ defined on $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ by

$$f(x)=\left\{\begin{array}{cc} \frac{\sqrt{2} \cos x-1}{\cot x-1}, & x \neq \frac{\pi}{4} \\ k \quad, & x=\frac{\pi}{4} \end{array}\right.$$

is continuous, then k is equal to

A
$\frac{1}{2}$
B
$2$
C
$1$
D
$\frac{1}{\sqrt{2}}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\lim _\limits{x \rightarrow 0}\left((\sin x)^{\frac{1}{x}}+\left(\frac{1}{x}\right)^{\sin x}\right)$, where $x>0$ is

A
0
B
$-$1
C
1
D
2
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$. $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is

A
$-\frac{1}{2}$
B
$\frac{1}{2}$
C
1
D
$-$1
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f(x)= \begin{cases}-2 \sin x & \text {, if } x \leq \frac{-\pi}{2} \\ A \sin x+B & , \text { if } \frac{-\pi}{2}< x<\frac{\pi}{2} \\ \cos x & , \text { if } x \geq \frac{\pi}{2}\end{cases}$ is continuous everywhere, then the values of $A$ and B are respectively

A
$1,-1$.
B
$-1,1$.
C
$1,1 .$
D
$-1,-1$.
MHT CET Subjects
EXAM MAP