Let $f(x)=\left\{\begin{array}{cc}\frac{1-\cos 4 x}{x^2} & , x<0 \\ a & , x=0 \\ \frac{\sqrt{2}}{\sqrt{16+\sqrt{x-4}}} & , x>0\end{array}\right.$ If $\mathrm{f}(x)$ is continuous at $x=0$, then the value of $a$ is
Let f be twice differentiable function such that $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x), \mathrm{f}^{\prime}(x)=\mathrm{g}(x)$ and $\mathrm{h}(x)=(\mathrm{f}(x))^2+(\mathrm{g}(x))^2$. If $\mathrm{h}(5)=1$, then the value of $h(10)$ is
$$\lim _\limits{x \rightarrow 2}\left(\frac{5^x+5^{3-x}-30}{5^{3-x}-5^{\frac{x}{2}}}\right)=$$
If $f(x)=\left\{\begin{array}{cc}\frac{a}{2}(x-|x|) & , \\ 0, & \text { for } x<0 \\ 0, & \text { for } x=0 \\ b x^2 \sin \left(\frac{1}{x}\right) & \text { for } x>0\end{array}\right.$
is continuous at $x=0$, then