1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Earth has mass ' $M_1$ ' radius ' $R_1$ ' and for moon mass ' $M_2$ ' and radius ' $R_2$ '. Distance between their centres is ' $r$ '. A body of mass ' $M$ ' is placed on the line joining them at a distance $\frac{\mathrm{r}}{3}$ from the centre of the earth. To project a mass ' $M$ ' to escape to infinity, the minimum speed required is

A
$\left[\frac{2 G}{r}\left(M_2+\frac{M_1}{2}\right)\right]^{1 / 2}$
B
$\left[\frac{4 \mathrm{G}}{\mathrm{r}}\left(\mathrm{M}_1+\frac{\mathrm{M}_2}{2}\right)\right]^{1 / 2}$
C
$\left[\frac{3 G}{r}\left(M_1+M_2\right)\right]^{1 / 2}$
D
$\left[\frac{6 G}{r}\left(M_1+\frac{M_2}{2}\right)\right]^{1 / 2}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The gravitational potential energy required to raise a satellite of mass ' $m$ ' to height ' $h$ ' above the earth's surface is ' $\mathrm{E}_1$ '. Let the energy required to put this satellite into the orbit at the same height be ' $E_2$ '. If $M$ and $R$ are the mass and radius of the earth respectively then $E_1: E_2$ is

A
$\mathrm{h}: \mathrm{R}$
B
$\mathrm{h}: 2 \mathrm{R}$
C
$\mathrm{R}: \mathrm{h}$
D
$2 \mathrm{~h}: \mathrm{R}$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The height above the earth's surface at which the acceleration due to gravity becomes $\left(\frac{1}{n}\right)$ times the value at the surface is ( $R=$ radius of earth)

A
$\frac{\mathrm{R}}{\sqrt{\mathrm{n}}}$
B
$\mathrm{R} \cdot \sqrt{\mathrm{n}}$
C
$\quad(\sqrt{n}+1) R$
D
$(\sqrt{\mathrm{n}}-1) \mathrm{R}$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The magnitude of gravitational field at distance ' $r_1$ ' and ' $r_2$ ' from the centre of a uniform sphere of radius ' $R$ ' and mass ' $M$ ' are ' $F_1$ ' and ' $F_2$ ' respectively. The ratio ' $\left(F_1 / F_2\right)$ ' will be (if $r_1>R$ and $r_2

A
$\mathrm{\frac{R^2}{r_1 r_2}}$
B
$\frac{\mathrm{R}^3}{\mathrm{r}_1 \mathrm{r}_2^2}$
C
$\frac{\mathrm{R}^3}{\mathrm{r}_1^2 \mathrm{r}_2}$
D
$\frac{\mathrm{R}^4}{\mathrm{r}_1^2 \mathrm{r}_2^2}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12