1
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
If $\mathrm{f}(x)$ is continuous at point $x=0$ where $$ f(x)=\left\{\begin{array}{cc} \frac{3 \sin x+5 \tan x}{\mathrm{a}^x-1} & , x<0 \\ \frac{2}{\log 2} & , x=0 \\ \frac{8 x+2 x \cos x}{\mathrm{~b}^x-1} & , x>0 \end{array}\right. $$ then the values of a and b , respectively, are __________
A
4, 5
B
16, 32
C
8, 10
D
16, 16
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}=$$

A
 $0$
B
$\frac{1}{2 \sqrt{2}}$
C
$\frac{1}{4 \sqrt{2}}$
D
$\frac{1}{2 \sqrt{2}(\sqrt{2}+1)}$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f$ defined on $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ by

$$f(x)=\left\{\begin{array}{cc} \frac{\sqrt{2} \cos x-1}{\cot x-1}, & x \neq \frac{\pi}{4} \\ k \quad, & x=\frac{\pi}{4} \end{array}\right.$$

is continuous, then k is equal to

A
$\frac{1}{2}$
B
$2$
C
$1$
D
$\frac{1}{\sqrt{2}}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\lim _\limits{x \rightarrow 0}\left((\sin x)^{\frac{1}{x}}+\left(\frac{1}{x}\right)^{\sin x}\right)$, where $x>0$ is

A
0
B
$-$1
C
1
D
2
MHT CET Subjects
EXAM MAP