Let $\mathrm{f}(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$. $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is
If the function $f(x)= \begin{cases}-2 \sin x & \text {, if } x \leq \frac{-\pi}{2} \\ A \sin x+B & , \text { if } \frac{-\pi}{2}< x<\frac{\pi}{2} \\ \cos x & , \text { if } x \geq \frac{\pi}{2}\end{cases}$ is continuous everywhere, then the values of $A$ and B are respectively
$$\lim _\limits{x \rightarrow 2} \frac{3^x+3^{3-x}-12}{3^{3-x}-3^{\frac{x}{2}}}=$$
Let $f:[-1,3] \rightarrow \mathbb{R}$ be defined as
$$\left\{\begin{array}{lc} |x|+[x], & -1 \leqslant x<1 \\ x+|x|, & 1 \leqslant x<2 \\ x+[x], & 2 \leqslant x \leqslant 3 \end{array}\right.$$
where $[t]$ denotes the greatest integer function. Then $f$ is discontinuous at