1
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 0} \frac{\mathrm{e}^{\tan x}-\mathrm{e}^x}{\tan x-x}= $$

A
1
B
0
C
$\frac{1}{2}$
D
$\frac{1}{4}$
2
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{(27-2 x)^{\frac{1}{3}}-3}{9-3(243+5 x)^{\frac{1}{5}}}, x \neq 0$ is continuous at $x=0$, then the value of $\mathrm{f}(0)$ is

A
$\frac{2}{3}$
B
6
C
2
D
$\frac{1}{3}$
3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 0} \frac{|x|}{|x|+x^2}= $$

A
0
B
1
C
-1
D
$\frac{1}{2}$
4
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
$\lim _\limits{x \rightarrow 3} \frac{(84-x)^{\frac{1}{4}}-3}{x-3}$ is
A
$\frac{-1}{108}$
B
$\frac{-1}{84}$
C
$\frac{-1}{27}$
D
$\frac{-1}{4}$
MHT CET Subjects
EXAM MAP