1
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+6
-1.5
An aqueous solution of X is added slowly to an aqueous solution of Y as shown in List – I. The variation in
conductivity of these reactions in List – II. Match List – I with List – II and select the correct answer using
the code given below the lists:
List - I
P. $$\mathop {(C{}_2{H_5}){}_3N}\limits_X $$ + $$\mathop {C{H_3}COOH}\limits_Y $$
Q. $$\mathop {KI(0.1M)}\limits_X $$ + $$\mathop {AgN{O_3}(0.01M)}\limits_Y $$
R. $$\mathop {C{H_3}COOH}\limits_X $$ + $$\mathop {KOH}\limits_Y $$
S. $$\mathop {NaOH}\limits_X $$ + $$\mathop {HI}\limits_Y $$
List - II
1. Conductivity decreases then increases
2. Conductivity decreases then does not change much
3. Conductivity increases then does not change much
4. Conductivity does not change much then increases
List - I
P. $$\mathop {(C{}_2{H_5}){}_3N}\limits_X $$ + $$\mathop {C{H_3}COOH}\limits_Y $$
Q. $$\mathop {KI(0.1M)}\limits_X $$ + $$\mathop {AgN{O_3}(0.01M)}\limits_Y $$
R. $$\mathop {C{H_3}COOH}\limits_X $$ + $$\mathop {KOH}\limits_Y $$
S. $$\mathop {NaOH}\limits_X $$ + $$\mathop {HI}\limits_Y $$
List - II
1. Conductivity decreases then increases
2. Conductivity decreases then does not change much
3. Conductivity increases then does not change much
4. Conductivity does not change much then increases
2
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
The electrochemical cell shown below is a concentration cell. M | M2+ (saturated solution of a sparingly soluble salt, MX2) || M2+ (0.001 mol dm–3) | M The emf of the cell depends on the difference in concentrations of M2+ ions at the two electrodes. The emf of the cell at 298 K is 0.059 V.
The solubility product (Ksp; mol3 dm–9) of MX2 at 298 K based on the information available for the given concentration cell is (take 2.303 $$\times$$ R $$\times$$ 298/F = 0.059 V)
The solubility product (Ksp; mol3 dm–9) of MX2 at 298 K based on the information available for the given concentration cell is (take 2.303 $$\times$$ R $$\times$$ 298/F = 0.059 V)
3
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
The electrochemical cell shown below is a concentration cell. M | M2+ (saturated solution of a sparingly soluble salt, MX2) || M2+ (0.001 mol dm–3) | M The emf of the cell depends on the difference in concentrations of M2+ ions at the two electrodes. The emf of the cell at 298 K is 0.059 V.
The value of ∆G (kJ mol–1) for the given cell is (take 1F = 96500 C mol–1)
The value of ∆G (kJ mol–1) for the given cell is (take 1F = 96500 C mol–1)
4
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0.75
Consider the following cell reaction:
2Fe(s) + O2(g) + 4H+(aq) $$\to$$ 2Fe2+ (aq) + 2H2O (l); Eo = 1.67 V
At [Fe2+] = 10-3 M, P(O2) = 0.1 atm and pH = 3, the cell potential at 25oC is
2Fe(s) + O2(g) + 4H+(aq) $$\to$$ 2Fe2+ (aq) + 2H2O (l); Eo = 1.67 V
At [Fe2+] = 10-3 M, P(O2) = 0.1 atm and pH = 3, the cell potential at 25oC is
Questions Asked from Electrochemistry (MCQ (Single Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements
Motion
Laws of Motion
Work Power & Energy
Impulse & Momentum
Rotational Motion
Properties of Matter
Heat and Thermodynamics
Simple Harmonic Motion
Waves
Gravitation
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry
Structure of Atom
Redox Reactions
Gaseous State
Equilibrium
Solutions
States of Matter
Thermodynamics
Chemical Kinetics and Nuclear Chemistry
Electrochemistry
Solid State & Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity
Chemical Bonding & Molecular Structure
Isolation of Elements
Hydrogen
s-Block Elements
p-Block Elements
d and f Block Elements
Coordination Compounds
Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities
Sequences and Series
Mathematical Induction and Binomial Theorem
Matrices and Determinants
Permutations and Combinations
Probability
Vector Algebra and 3D Geometry
Complex Numbers
Trigonometry
Coordinate Geometry
Calculus