In a conductometric titration, small volume of titrant of higher concentration is added stepwise to a larger volume of titrate of much lower concentration, and the conductance is measured after each addition.
The limiting ionic conductivity $\left(\Lambda_0\right)$ values (in $\mathrm{mS} \mathrm{m}{ }^2 \mathrm{~mol}^{-1}$ ) for different ions in aqueous solutions are given below:
$$ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline \text { Ions } & \mathrm{Ag}^{+} & \mathrm{K}^{+} & \mathrm{Na}^{+} & \mathrm{H}^{+} & \mathrm{NO}_3^{-} & \mathrm{Cl}^{-} & \mathrm{SO}_4^{2-} & \mathrm{OH}^{-} & \mathrm{CH}_3 \mathrm{COO}^{-} \\ \hline \Lambda_0 & 6.2 & 7.4 & 5.0 & 35.0 & 7.2 & 7.6 & 16.0 & 19.9 & 4.1 \\ \hline \end{array} $$
For different combinations of titrates and titrants given in List-I, the graphs of 'conductance' versus 'volume of titrant' are given in List-II.
Match each entry in List-I with the appropriate entry in List-II and choose the correct option.
LIST-I | LIST-II |
---|---|
(P) Titrate: KCl Titrant: AgNO$_3$ |
|
(Q) Titrate: AgNO$_3$ Titrant: KCl |
|
(R) Titrate: NaOH Titrant: HCl |
|
(S) Titrate: NaOH Titrant: CH$_3$COOH |
|
$$ \begin{aligned} & {\left[\Lambda_{\mathrm{m}}=\right.\text { molar conductivity }} \\\\ & \Lambda_{\mathrm{m}}^{\mathrm{o}}=\text { limiting molar conductivity } \\\\ & \mathrm{c}=\text { molar concentration } \\\\ & \left.\mathrm{K}_{\mathrm{a}}=\text { dissociation constant of } \mathrm{HX}\right] \end{aligned} $$
(critical micelle concentration (CMC) is marked with an arrow in the figures)
$$Zn\left( s \right)\left| {ZnS{O_4}\left( {aq} \right)} \right|\left| {CuS{O_4}\left( {aq} \right)} \right|Cu\left( s \right)$$
when the concentration of $$Z{n^{2 + }}$$ is $$10$$ times the concentration of $$C{u^{2 + }},$$ the expression for $$\Delta G$$ (in $$J\,mo{l^{ - 1}}$$) is [$$F$$ is Faraday constant; $$R$$ is gas constant; $$T$$ is temperature; $${E^0}$$ (cell)$$=1.1$$ $$V$$]