1
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
A rod of mass m and length L, pivoted at one of its ends, is hanging vertically. A bullet of the same mass moving at speed v strikes the rod horizontally at a distance x from its pivoted end and gets embedded in it. The combined system now rotates with angular speed $$\omega$$ about the pivot. The maximum angular speed $$\omega$$M is achieved for x = xM. Then

JEE Advanced 2020 Paper 2 Offline Physics - Rotational Motion Question 38 English
A
$$\omega = {{3vx} \over {{L^2} + 3{x^2}}}$$
B
$$\omega = {{12vx} \over {{L^2} + 12{x^2}}}$$
C
$${x_M} = {L \over {\sqrt 3 }}$$
D
$${\omega _M} = {v \over {2L}}\sqrt 3 $$
2
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
A thin and uniform rod of mass M and length L is held vertical on a floor with large friction. The rod is released from rest so that it falls by rotating about its contact-point with the floor without slipping. Which of the following statement(s) is/are correct, when the rod makes an angle 60$$^\circ $$ with vertical? [g is the acceleration due to gravity]
A
The angular acceleration of the rod will be $${{2g} \over L}$$.
B
The normal reaction force from the floor on the rod will be $${{Mg} \over 16}$$.
C
The radial acceleration of the rod's center of mass will be $${{3g} \over 4}$$.
D
The angular speed of the rod will be $$\sqrt {{{3g} \over {2L}}} $$.
3
JEE Advanced 2018 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
The potential energy of a particle of mass $$m$$ at a distance $$r$$ from a fixed point $$O$$ is given by $$V\left( r \right) = k{r^2}/2,$$ where $$k$$ is a positive constant of appropriate dimensions. This particle is moving in a circular orbit of radius $$R$$ about the point $$O$$. If $$v$$ is the speed of the particle and $$L$$ is the magnitude of its angular momentum about $$O,$$ which of the following statements is (are) true?
A
$$v = \sqrt {{k \over {2m}}} R$$
B
$$v = \sqrt {{k \over m}} R$$
C
$$L = \sqrt {mk} {R^2}$$
D
$$L = \sqrt {{{mk} \over 2}} {R^2}$$
4
JEE Advanced 2018 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Consider a body of mass $$1.0$$ $$kg$$ at rest at the origin at time $$t=0.$$ A force $$\overrightarrow F = \left( {\alpha t \widehat i + \beta \widehat j} \right)$$ is applied on the body, where $$\alpha = 1.0N{s^{ - 1}}$$ and $$\beta = 1.0\,N.$$ The torque acting on the body about the origin at time $$t=1.0s$$ is $$\overrightarrow \tau .$$ Which of the following statements is (are) true?
A
$$\left| {\overrightarrow \tau } \right| = {1 \over 3}\,Nm$$
B
The torque $$\overrightarrow \tau $$ is in the direction of the unit vector $$ + \,\widehat k$$
C
The velocity of the body at $$t = 1s$$ is $$\overrightarrow v = {1 \over 2}\left( {\widehat i + 2\widehat j} \right)m{s^{ - 1}}$$
D
The magnitude of displacement of the body at $$t = 1s$$ is $${1 \over 6}m$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12