1
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Which ONE of the following is a linear non - homogeneous differential equation , where $$x$$ and $$y$$ are the independent and dependent variables respectively?
2
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
A function $$n(x)$$ satisfies the differential equation $${{{d^2}n\left( x \right)} \over {d{x^2}}} - {{n\left( x \right)} \over {{L^2}}} = 0$$ where $$L$$ is a constant. The boundary conditions are $$n(0)=k$$ and $$n\left( \propto \right) = 0.$$ The solution to this equation is
3
GATE ECE 2009
MCQ (Single Correct Answer)
+2
-0.6
Match each differential equation in Group $$I$$ to its family of solution curves from Group $$II.$$
Group $$I$$
$$P:$$$$\,\,\,$$ $${{dy} \over {dx}} = {y \over x}$$
$$Q:$$$$\,\,\,$$ $${{dy} \over {dx}} = {{ - y} \over x}$$
$$R:$$$$\,\,\,$$ $${{dy} \over {dx}} = {x \over y}$$
$$S:$$$$\,\,\,$$ $${{dy} \over {dx}} = {{ - x} \over y}$$
Group $$II$$
$$(1)$$$$\,\,\,$$ Circle
$$(2)$$$$\,\,\,$$ straight lines
$$(3)$$$$\,\,\,$$ Hyperbola
4
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
Which of the following is a solution to the differential equation $${d \over {dt}}x\left( t \right) + 3x\left( t \right) = 0,\,\,x\left( 0 \right) = 2?$$
Questions Asked from Differential Equations (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics