1
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
The particular solution of the initial value problem given below is $$\,\,{{{d^2}y} \over {d{x^2}}} + 12{{dy} \over {dx}} + 36y = 0\,\,$$ with $$\,y\left( 0 \right) = 3\,\,$$ and $$\,\,{\left. {{{dy} \over {dx}}} \right|_{x = 0}} = - 36\,\,$$
2
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The Solution of the differential equation $$\,{{{d^2}y} \over {d{t^2}}} + 2{{dy} \over {dt}} + y = 0\,\,$$ with $$\,y\left( 0 \right) = {y^1}\left( 0 \right) = 1\,\,$$ is
3
GATE ECE 2015 Set 3
Numerical
+2
-0
Consider the differential equation $${{{d^2}x\left( t \right)} \over {d{t^2}}} + 3{{dx\left( t \right)} \over {dt}} + 2x\left( t \right) = 0$$
Given $$x(0) = 20$$ & $$\,x\left( 1 \right) = {{10} \over e},$$ where $$e=2.718,$$
Given $$x(0) = 20$$ & $$\,x\left( 1 \right) = {{10} \over e},$$ where $$e=2.718,$$
The value of $$x(2)$$ is
Your input ____
4
GATE ECE 2014 Set 4
Numerical
+2
-0
With initial values $$\,\,\,y\left( 0 \right) = y'\left( 0 \right) = 1,\,\,\,$$ the solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 4y = 0\,\,$$ at $$x=1$$ is ________.
Your input ____
Questions Asked from Differential Equations (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude