1
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The Solution of the differential equation $$\,{{{d^2}y} \over {d{t^2}}} + 2{{dy} \over {dt}} + y = 0\,\,$$ with $$\,y\left( 0 \right) = {y^1}\left( 0 \right) = 1\,\,$$ is
2
GATE ECE 2015 Set 3
Numerical
+2
-0
Consider the differential equation $${{{d^2}x\left( t \right)} \over {d{t^2}}} + 3{{dx\left( t \right)} \over {dt}} + 2x\left( t \right) = 0$$
Given $$x(0) = 20$$ & $$\,x\left( 1 \right) = {{10} \over e},$$ where $$e=2.718,$$
Given $$x(0) = 20$$ & $$\,x\left( 1 \right) = {{10} \over e},$$ where $$e=2.718,$$
The value of $$x(2)$$ is
Your input ____
3
GATE ECE 2014 Set 4
Numerical
+2
-0
With initial values $$\,\,\,y\left( 0 \right) = y'\left( 0 \right) = 1,\,\,\,$$ the solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 4y = 0\,\,$$ at $$x=1$$ is ________.
Your input ____
4
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Which ONE of the following is a linear non - homogeneous differential equation , where $$x$$ and $$y$$ are the independent and dependent variables respectively?
Questions Asked from Differential Equations (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude