1
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The Solution of the differential equation $$\,{{{d^2}y} \over {d{t^2}}} + 2{{dy} \over {dt}} + y = 0\,\,$$ with $$\,y\left( 0 \right) = {y^1}\left( 0 \right) = 1\,\,$$ is
A
$$\left( {2 - t} \right){e^t}$$
B
$$\left( {1 + 2t} \right){e^{ - t}}$$
C
$$\left( {2 + t} \right){e^{ - t}}$$
D
$$\left( {1 - 2t} \right){e^t}$$
2
GATE ECE 2014 Set 4
Numerical
+2
-0
With initial values $$\,\,\,y\left( 0 \right) = y'\left( 0 \right) = 1,\,\,\,$$ the solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 4y = 0\,\,$$ at $$x=1$$ is ________.
Your input ____
3
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Which ONE of the following is a linear non - homogeneous differential equation , where $$x$$ and $$y$$ are the independent and dependent variables respectively?
A
$${{dy} \over {dx}} + xy = {e^{ - x}}$$
B
$${{dy} \over {dx}} + xy = 0$$
C
$${{dy} \over {dx}} + xy = {e^{ - y}}$$
D
$${{dy} \over {dx}} + {e^{ - y}} = 0$$
4
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
A function $$n(x)$$ satisfies the differential equation $${{{d^2}n\left( x \right)} \over {d{x^2}}} - {{n\left( x \right)} \over {{L^2}}} = 0$$ where $$L$$ is a constant. The boundary conditions are $$n(0)=k$$ and $$n\left( \propto \right) = 0.$$ The solution to this equation is
A
$$n\left( x \right) = k\,\exp \left( {{{ - x} \over L}} \right)$$
B
$$n\left( x \right) = k\,\exp \left( {{{ - x} \over {\sqrt L }}} \right)$$
C
$$n\left( x \right) = {k^2}\,\exp \left( {{{ - x} \over L}} \right)$$
D
$$n\left( x \right) = {k^2}\,\exp \left( {{{ - x} \over {\sqrt L }}} \right)$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12