1
GATE ECE 2015 Set 3
Numerical
+2
-0
Consider the differential equation $${{{d^2}x\left( t \right)} \over {d{t^2}}} + 3{{dx\left( t \right)} \over {dt}} + 2x\left( t \right) = 0$$
Given $$x(0) = 20$$ & $$\,x\left( 1 \right) = {{10} \over e},$$ where $$e=2.718,$$
Given $$x(0) = 20$$ & $$\,x\left( 1 \right) = {{10} \over e},$$ where $$e=2.718,$$
The value of $$x(2)$$ is
Your input ____
2
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The Solution of the differential equation $$\,{{{d^2}y} \over {d{t^2}}} + 2{{dy} \over {dt}} + y = 0\,\,$$ with $$\,y\left( 0 \right) = {y^1}\left( 0 \right) = 1\,\,$$ is
3
GATE ECE 2014 Set 4
Numerical
+2
-0
With initial values $$\,\,\,y\left( 0 \right) = y'\left( 0 \right) = 1,\,\,\,$$ the solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 4y = 0\,\,$$ at $$x=1$$ is ________.
Your input ____
4
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Which ONE of the following is a linear non - homogeneous differential equation , where $$x$$ and $$y$$ are the independent and dependent variables respectively?
Questions Asked from Differential Equations (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series
Fourier Transform
Continuous Time Signal Laplace Transform
Discrete Time Signal Fourier Series Fourier Transform
Discrete Fourier Transform and Fast Fourier Transform
Discrete Time Signal Z Transform
Continuous Time Linear Invariant System
Discrete Time Linear Time Invariant Systems
Transmission of Signal Through Continuous Time LTI Systems
Sampling
Transmission of Signal Through Discrete Time Lti Systems
Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics