1
GATE ECE 2016 Set 3
Numerical
+1
-0
The z-parameter matrix for the two-port network shown is $$\left[ {\matrix{ {2\,j\,\omega } & {j\,\omega } \cr {j\,\omega } & {3\, + \,2\,j\,\omega } \cr } } \right]$$\$ Where the entries are in $$\Omega$$. Suppose $$\,{Z_b}\,\left( {j\,\omega } \right) = {R_b} + j\,\omega$$ Then the value of $${R_b}$$ (in $$\Omega$$) equals _______________________3
2
GATE ECE 2016 Set 1
+1
-0.3
Consider a two-port network with the transmission matrix: T = $$\begin{bmatrix}A&B\\C&D\end{bmatrix}$$. If the network is reciprocal, then
A
T-1 = T
B
T2 = T
C
Determinant (T) = 0
D
Determinant (T) = 1
3
GATE ECE 2015 Set 2
+1
-0.3
The 2-port admittance matrix of the circuit shown is given by
A
$$\left[ {\matrix{ {0.3} & { - 0.2} \cr { - 0.2} & {0.3} \cr } } \right]$$
B
$$\left[ {\matrix{ {15} & { 5} \cr { 5} & {15} \cr } } \right]$$
C
$$\left[ {\matrix{ {3.33} & { 5} \cr { 5} & {3.33} \cr } } \right]$$
D
$$\left[ {\matrix{ {0.3} & { 0.4} \cr { 0.4} & {0.3} \cr } } \right]$$
4
GATE ECE 2010
+1
-0.3
For the two-port network shown below, the short-circuit admittance parameter matrix is
A
$$\begin{bmatrix}4&-2\\-2&4\end{bmatrix}S$$
B
$$\begin{bmatrix}1&-0.5\\-0.5&1\end{bmatrix}S$$
C
$$\begin{bmatrix}1&0.5\\0.5&1\end{bmatrix}S$$
D
$$\begin{bmatrix}4&2\\2&4\end{bmatrix}S$$
EXAM MAP
Medical
NEET