1
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Consider a two-port network with the transmission matrix: T = $$\begin{bmatrix}A&B\\C&D\end{bmatrix}$$. If the network is reciprocal, then
A
T-1 = T
B
T2 = T
C
Determinant (T) = 0
D
Determinant (T) = 1
2
GATE ECE 2016 Set 3
Numerical
+1
-0
The z-parameter matrix for the two-port network shown is $$$\left[ {\matrix{ {2\,j\,\omega } & {j\,\omega } \cr {j\,\omega } & {3\, + \,2\,j\,\omega } \cr } } \right]$$$ Where the entries are in $$\Omega $$. Suppose $$\,{Z_b}\,\left( {j\,\omega } \right) = {R_b} + j\,\omega $$ GATE ECE 2016 Set 3 Network Theory - Two Port Networks Question 33 English Then the value of $${R_b}$$ (in $$\Omega $$) equals _______________________3
Your input ____
3
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The 2-port admittance matrix of the circuit shown is given by GATE ECE 2015 Set 2 Network Theory - Two Port Networks Question 34 English
A
$$\left[ {\matrix{ {0.3} & { - 0.2} \cr { - 0.2} & {0.3} \cr } } \right]$$
B
$$\left[ {\matrix{ {15} & { 5} \cr { 5} & {15} \cr } } \right]$$
C
$$\left[ {\matrix{ {3.33} & { 5} \cr { 5} & {3.33} \cr } } \right]$$
D
$$\left[ {\matrix{ {0.3} & { 0.4} \cr { 0.4} & {0.3} \cr } } \right]$$
4
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
For the two-port network shown below, the short-circuit admittance parameter matrix is GATE ECE 2010 Network Theory - Two Port Networks Question 50 English
A
$$\begin{bmatrix}4&-2\\-2&4\end{bmatrix}S$$
B
$$\begin{bmatrix}1&-0.5\\-0.5&1\end{bmatrix}S$$
C
$$\begin{bmatrix}1&0.5\\0.5&1\end{bmatrix}S$$
D
$$\begin{bmatrix}4&2\\2&4\end{bmatrix}S$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12