1
GATE ECE 2016 Set 1
+1
-0.3
Consider a two-port network with the transmission matrix: T = $$\begin{bmatrix}A&B\\C&D\end{bmatrix}$$. If the network is reciprocal, then
A
T-1 = T
B
T2 = T
C
Determinant (T) = 0
D
Determinant (T) = 1
2
GATE ECE 2015 Set 2
+1
-0.3
The 2-port admittance matrix of the circuit shown is given by A
$$\left[ {\matrix{ {0.3} & { - 0.2} \cr { - 0.2} & {0.3} \cr } } \right]$$
B
$$\left[ {\matrix{ {15} & { 5} \cr { 5} & {15} \cr } } \right]$$
C
$$\left[ {\matrix{ {3.33} & { 5} \cr { 5} & {3.33} \cr } } \right]$$
D
$$\left[ {\matrix{ {0.3} & { 0.4} \cr { 0.4} & {0.3} \cr } } \right]$$
3
GATE ECE 2010
+1
-0.3
For the two-port network shown below, the short-circuit admittance parameter matrix is A
$$\begin{bmatrix}4&-2\\-2&4\end{bmatrix}S$$
B
$$\begin{bmatrix}1&-0.5\\-0.5&1\end{bmatrix}S$$
C
$$\begin{bmatrix}1&0.5\\0.5&1\end{bmatrix}S$$
D
$$\begin{bmatrix}4&2\\2&4\end{bmatrix}S$$
4
GATE ECE 2009
+1
-0.3
If the transfer function of the following network is $$\,{{{V_0}(s)} \over {{V_i}(s)}} = {1 \over {2\, + \,sCR}}$$ The value of the load resistance $${R_L}$$ is

A
R/4
B
R/2
C
R
D
2R
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Communications
Electromagnetics
General Aptitude
Engineering Mathematics
EXAM MAP
Joint Entrance Examination