1
GATE ECE 2000
Subjective
+5
-0
The network $$N$$ in Fig. consists only of two elements: a resistor of $$1\Omega $$ and an inductor of L Henry. $$A$$ $$5$$ $$V$$ source is connected at the input at $$t\, = \,0$$ seconds. The inductor current is zero at $$t\, = \,0$$. The output voltage is found to be $$5{e^{ - 3t}}\,\,V,$$ for $$t\, = \,0$$. GATE ECE 2000 Network Theory - Transient Response Question 8 English

(a) Find the voltage transfer function of the network.
(b) Find L, and draw the configuration of the network.
(c) Find the impulse response of the network.

2
GATE ECE 1999
Subjective
+5
-0
In the circuit of figure, the switch $$'S'$$ has remained open for a long time. The switch closes instantaneously at $$ t = 0$$. GATE ECE 1999 Network Theory - Transient Response Question 9 English n

(a) Find $${V_0}$$ for $$t \le 0$$ and as $$t \to \infty $$.
(b) Write an expression for $${V_0}$$ as a function of time for $$0 \le t \le \infty $$.
(c) Evaluate $${V_0}$$ at $$t = 25\,\,\mu $$sec.

3
GATE ECE 1994
Subjective
+5
-0
The circuit shown in the figure, is initially in its steady state. Switch is opened at t = 0.
(1) Determine the initial voltage, VC(0-), across the capacitor, and the initial current, iL(0-) , through the indicator.
(2) Calculate the voltage, VL(t) , across the inductance for t > 0. GATE ECE 1994 Network Theory - Transient Response Question 11 English
4
GATE ECE 1993
Subjective
+5
-0
In the following circuit the capacitance varies as C = KQ, where K is a constant equal to 0.5 Farads/Coulomb and Q, the charge on the capacitor in Coulombs. Determine the current through the circuit and sketch the voltage waveform across the capacitor (VC) for a step input Vi as shown in figure. GATE ECE 1993 Network Theory - Transient Response Question 12 English
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12