1
GATE ECE 1999
Subjective
+5
-0
In the circuit of figure, the switch $$'S'$$ has remained open for a long time. The switch closes instantaneously at $$ t = 0$$. GATE ECE 1999 Network Theory - Transient Response Question 9 English n

(a) Find $${V_0}$$ for $$t \le 0$$ and as $$t \to \infty $$.
(b) Write an expression for $${V_0}$$ as a function of time for $$0 \le t \le \infty $$.
(c) Evaluate $${V_0}$$ at $$t = 25\,\,\mu $$sec.

2
GATE ECE 1994
Subjective
+5
-0
The circuit shown in the figure, is initially in its steady state. Switch is opened at t = 0.
(1) Determine the initial voltage, VC(0-), across the capacitor, and the initial current, iL(0-) , through the indicator.
(2) Calculate the voltage, VL(t) , across the inductance for t > 0. GATE ECE 1994 Network Theory - Transient Response Question 11 English
3
GATE ECE 1993
Subjective
+5
-0
In the following circuit the capacitance varies as C = KQ, where K is a constant equal to 0.5 Farads/Coulomb and Q, the charge on the capacitor in Coulombs. Determine the current through the circuit and sketch the voltage waveform across the capacitor (VC) for a step input Vi as shown in figure. GATE ECE 1993 Network Theory - Transient Response Question 12 English
4
GATE ECE 1991
Subjective
+5
-0
The network shown in figure is initially under steady-state condition with the switch in position 1. The switch is moved from position 1 to position 2 at t = 0. Calculate the current i(t) through R1 after switching. GATE ECE 1991 Network Theory - Transient Response Question 13 English
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12