1
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+2
-0.6
The N-point DFT X of a sequence x[n] 0 ≤ n ≤ N − 1 is given by
$$X\left[ k \right] = {1 \over {\sqrt N }}\,\,\sum\limits_{n = 0}^{N - 1} x \,[n\,]e{\,^{ - j{{2\pi } \over N}nk}}$$, 0$$ \le k \le N - 1$$
Denote this relation as X = DFT(x). For N= 4 which one of the following sequences satisfies DFT (DFT(x) ) = ___________.
$$X\left[ k \right] = {1 \over {\sqrt N }}\,\,\sum\limits_{n = 0}^{N - 1} x \,[n\,]e{\,^{ - j{{2\pi } \over N}nk}}$$, 0$$ \le k \le N - 1$$
Denote this relation as X = DFT(x). For N= 4 which one of the following sequences satisfies DFT (DFT(x) ) = ___________.
2
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The DFT of a vector [a b c d] is the vector [α β γ δ ]. Consider the product
The DFT of the vector [ p q r s] is a scaled version of
3
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
The first six points of the 8-point DFT of a real valued sequence are 5, 1 - j3, 0, 3- j4, 0 and 3+ j4. The last two points of the DFT are respectively
4
GATE ECE 2009
MCQ (Single Correct Answer)
+2
-0.6
The 4-point Discrete Fourier Transform (DFT) of a discrete time sequence $$\left\{ {1,\,0,\,2,\,3} \right\}$$ is
Questions Asked from Discrete Fourier Transform and Fast Fourier Transform (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude