1
GATE ECE 2016 Set 2
Numerical
+2
-0
The Discrete Fourier Transform (DFT) of the 4-point sequence
$$x\left[ n \right]$$= {x[0], x[1], x[2], x[3]}
= {3, 2, 3, 4 } is
x[k] = {X[0], X[1], X[2], X[3]}
= {12, 2j, 0, -2j }
If $${X_1}$$ [k] is the DFT of the 12- point sequence$${X_1}$$[n] = {3, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0 },
The value of $$\left| {{{{X_1}[8]} \over {{X_1}[11]}}} \right|$$ is-----------------------.
$$x\left[ n \right]$$= {x[0], x[1], x[2], x[3]}
= {3, 2, 3, 4 } is
x[k] = {X[0], X[1], X[2], X[3]}
= {12, 2j, 0, -2j }
If $${X_1}$$ [k] is the DFT of the 12- point sequence$${X_1}$$[n] = {3, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0 },
The value of $$\left| {{{{X_1}[8]} \over {{X_1}[11]}}} \right|$$ is-----------------------.
Your input ____
2
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Two sequences [a, b, c ] and [A, B, C ] are related as,
$$\left[ {\matrix{ A \cr B \cr C \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } {\mkern 1mu} \,\matrix{ 1 \cr {W_3^{ - 1}} \cr {W_3^{ - 2}} \cr } \,\matrix{ 1 \cr {W_3^{ - 2}} \cr {W_3^{ - 4}} \cr } } \right]{\mkern 1mu} \left[ {\matrix{ a \cr b \cr c \cr } } \right]$$ Where
$${W_3}$$ = $${e^{j{{2\pi } \over 3}}}$$ .
if another sequence $$\left[ {p,\,q,\,r} \right]$$ is derived as,
$$\left[ {\matrix{ p \cr q \cr r \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } \,\,\matrix{ 1 \cr {W_3^1} \cr {W_3^2} \cr } \,\matrix{ 1 \cr {W_3^2} \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ 1 \cr 0 \cr 0 \cr } \,\matrix{ 0 \cr {W_3^2} \cr {0\,} \cr } \,\matrix{ 0 \cr 0 \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ {A/3} \cr {B/3} \cr {C/3} \cr } } \right]$$ ,
Then the relationship between the sequences $$\left[ {p,\,q,\,r} \right]$$ and $$\left[ {a,\,b,\,c} \right]$$ is
$$\left[ {\matrix{ A \cr B \cr C \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } {\mkern 1mu} \,\matrix{ 1 \cr {W_3^{ - 1}} \cr {W_3^{ - 2}} \cr } \,\matrix{ 1 \cr {W_3^{ - 2}} \cr {W_3^{ - 4}} \cr } } \right]{\mkern 1mu} \left[ {\matrix{ a \cr b \cr c \cr } } \right]$$ Where
$${W_3}$$ = $${e^{j{{2\pi } \over 3}}}$$ .
if another sequence $$\left[ {p,\,q,\,r} \right]$$ is derived as,
$$\left[ {\matrix{ p \cr q \cr r \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } \,\,\matrix{ 1 \cr {W_3^1} \cr {W_3^2} \cr } \,\matrix{ 1 \cr {W_3^2} \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ 1 \cr 0 \cr 0 \cr } \,\matrix{ 0 \cr {W_3^2} \cr {0\,} \cr } \,\matrix{ 0 \cr 0 \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ {A/3} \cr {B/3} \cr {C/3} \cr } } \right]$$ ,
Then the relationship between the sequences $$\left[ {p,\,q,\,r} \right]$$ and $$\left[ {a,\,b,\,c} \right]$$ is
3
GATE ECE 2015 Set 1
Numerical
+2
-0
Consider two real sequences with time- origin marked by the bold value, $${x_1}\left[ n \right] = \left\{ {1,\,2,\,3,\,0} \right\}\,,\,{x_2}\left[ n \right] = \left\{ {1,\,3,\,2,\,1} \right\}$$ Let $${X_1}(k)$$ and $${X_2}(k)$$ be 4-point DFTs of $${x_1}\left[ n \right]$$ and $${x_2}\left[ n \right]$$, respectively. Another sequence $${X_3}(n)$$ is derived by taking 4-ponit inverse DFT of $${X_3}(k)$$= $${X_1}(k)$$$${X_2}(k)$$. The value of $${x_3}\left[ 2 \right]$$
Your input ____
4
GATE ECE 2014 Set 1
Numerical
+2
-0
Consider a discrete time periodic signal x$$\left[ n \right]$$= $$\sin \left( {{{\pi n} \over 5}} \right)$$. Let ak be the complex Fourier serier coefficients of x$$\left[ n \right]$$. The coefficients $$\left\{ {{a_k}} \right\}$$ are non- zero when k = Bm $$ \pm $$ 1, where m is any integer. The value of B is _________________.
Your input ____
Questions Asked from Discrete Fourier Transform and Fast Fourier Transform (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude