1
GATE ECE 2022
Numerical
+2
-0.67
For a vector $$\overline x $$ = [x[0], x[1], ....., x[7]], the 8-point discrete Fourier transform (DFT) is denoted by $$\overline X $$ = DFT($$\overline x $$) = [X[0], X[1], ....., X[7]], where
$$X[k] = \sum\limits_{n = 0}^7 {x[n]\exp \left( { - j{{2\pi } \over 8}nk} \right)} $$.
Here, $$j = \sqrt { - 1} $$. If $$\overline x $$ = [1, 0, 0, 0, 2, 0, 0, 0] and $$\overline y $$ = DFT (DFT($$\overline x $$)), then the value of y[0] is __________ (rounded off to one decimal place).
Your input ____
2
GATE ECE 2016 Set 3
Numerical
+2
-0
A continuous-time speech signal $${x_a}(t)$$ is sampled at a rate of 8 kHz and the samples are subsequently grouped in
blocks, each of size N. The DFT of each block is to be computed in real time using the radix-2 decimation-in-frequency
FFT algorithm. If the processor performs all operations sequentially, and takes 20 µs for computing each complex multiplication (including multiplications by 1 and −1) and the time required for addition/ subtraction is negligible, then the
maximum value of N is __________.
Your input ____
3
GATE ECE 2016 Set 2
Numerical
+2
-0
The Discrete Fourier Transform (DFT) of the 4-point sequence
$$x\left[ n \right]$$= {x[0], x[1], x[2], x[3]}
= {3, 2, 3, 4 } is
x[k] = {X[0], X[1], X[2], X[3]}
= {12, 2j, 0, -2j }
If $${X_1}$$ [k] is the DFT of the 12- point sequence$${X_1}$$[n] = {3, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0 },
The value of $$\left| {{{{X_1}[8]} \over {{X_1}[11]}}} \right|$$ is-----------------------.
$$x\left[ n \right]$$= {x[0], x[1], x[2], x[3]}
= {3, 2, 3, 4 } is
x[k] = {X[0], X[1], X[2], X[3]}
= {12, 2j, 0, -2j }
If $${X_1}$$ [k] is the DFT of the 12- point sequence$${X_1}$$[n] = {3, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0 },
The value of $$\left| {{{{X_1}[8]} \over {{X_1}[11]}}} \right|$$ is-----------------------.
Your input ____
4
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Two sequences [a, b, c ] and [A, B, C ] are related as,
$$\left[ {\matrix{ A \cr B \cr C \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } {\mkern 1mu} \,\matrix{ 1 \cr {W_3^{ - 1}} \cr {W_3^{ - 2}} \cr } \,\matrix{ 1 \cr {W_3^{ - 2}} \cr {W_3^{ - 4}} \cr } } \right]{\mkern 1mu} \left[ {\matrix{ a \cr b \cr c \cr } } \right]$$ Where
$${W_3}$$ = $${e^{j{{2\pi } \over 3}}}$$ .
if another sequence $$\left[ {p,\,q,\,r} \right]$$ is derived as,
$$\left[ {\matrix{ p \cr q \cr r \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } \,\,\matrix{ 1 \cr {W_3^1} \cr {W_3^2} \cr } \,\matrix{ 1 \cr {W_3^2} \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ 1 \cr 0 \cr 0 \cr } \,\matrix{ 0 \cr {W_3^2} \cr {0\,} \cr } \,\matrix{ 0 \cr 0 \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ {A/3} \cr {B/3} \cr {C/3} \cr } } \right]$$ ,
Then the relationship between the sequences $$\left[ {p,\,q,\,r} \right]$$ and $$\left[ {a,\,b,\,c} \right]$$ is
$$\left[ {\matrix{ A \cr B \cr C \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } {\mkern 1mu} \,\matrix{ 1 \cr {W_3^{ - 1}} \cr {W_3^{ - 2}} \cr } \,\matrix{ 1 \cr {W_3^{ - 2}} \cr {W_3^{ - 4}} \cr } } \right]{\mkern 1mu} \left[ {\matrix{ a \cr b \cr c \cr } } \right]$$ Where
$${W_3}$$ = $${e^{j{{2\pi } \over 3}}}$$ .
if another sequence $$\left[ {p,\,q,\,r} \right]$$ is derived as,
$$\left[ {\matrix{ p \cr q \cr r \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } \,\,\matrix{ 1 \cr {W_3^1} \cr {W_3^2} \cr } \,\matrix{ 1 \cr {W_3^2} \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ 1 \cr 0 \cr 0 \cr } \,\matrix{ 0 \cr {W_3^2} \cr {0\,} \cr } \,\matrix{ 0 \cr 0 \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ {A/3} \cr {B/3} \cr {C/3} \cr } } \right]$$ ,
Then the relationship between the sequences $$\left[ {p,\,q,\,r} \right]$$ and $$\left[ {a,\,b,\,c} \right]$$ is
Questions Asked from Discrete Fourier Transform and Fast Fourier Transform (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude