1
GATE ECE 2016 Set 3
Numerical
+2
-0
A continuous-time speech signal $${x_a}(t)$$ is sampled at a rate of 8 kHz and the samples are subsequently grouped in blocks, each of size N. The DFT of each block is to be computed in real time using the radix-2 decimation-in-frequency FFT algorithm. If the processor performs all operations sequentially, and takes 20 µs for computing each complex multiplication (including multiplications by 1 and −1) and the time required for addition/ subtraction is negligible, then the maximum value of N is __________.
Your input ____
2
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Two sequences [a, b, c ] and [A, B, C ] are related as,
$$\left[ {\matrix{ A \cr B \cr C \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } {\mkern 1mu} \,\matrix{ 1 \cr {W_3^{ - 1}} \cr {W_3^{ - 2}} \cr } \,\matrix{ 1 \cr {W_3^{ - 2}} \cr {W_3^{ - 4}} \cr } } \right]{\mkern 1mu} \left[ {\matrix{ a \cr b \cr c \cr } } \right]$$ Where
$${W_3}$$ = $${e^{j{{2\pi } \over 3}}}$$ .
if another sequence $$\left[ {p,\,q,\,r} \right]$$ is derived as,
$$\left[ {\matrix{ p \cr q \cr r \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } \,\,\matrix{ 1 \cr {W_3^1} \cr {W_3^2} \cr } \,\matrix{ 1 \cr {W_3^2} \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ 1 \cr 0 \cr 0 \cr } \,\matrix{ 0 \cr {W_3^2} \cr {0\,} \cr } \,\matrix{ 0 \cr 0 \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ {A/3} \cr {B/3} \cr {C/3} \cr } } \right]$$ ,
Then the relationship between the sequences $$\left[ {p,\,q,\,r} \right]$$ and $$\left[ {a,\,b,\,c} \right]$$ is
A
$$\left[ {p,\,q,\,r} \right]$$= $$\left[ {b,\,a,\,c} \right]$$
B
$$\left[ {p,\,q,\,r} \right]$$ = $$\left[ {b,\,c,\,a} \right]$$
C
$$\left[ {p,\,q,\,r} \right]$$= $$\left[ {c,\,a,\,b} \right]$$
D
$$\left[ {p,\,q,\,r} \right]$$ = $$\left[ {c,\,b,\,a} \right]$$
3
GATE ECE 2015 Set 1
Numerical
+2
-0
Consider two real sequences with time- origin marked by the bold value, $${x_1}\left[ n \right] = \left\{ {1,\,2,\,3,\,0} \right\}\,,\,{x_2}\left[ n \right] = \left\{ {1,\,3,\,2,\,1} \right\}$$ Let $${X_1}(k)$$ and $${X_2}(k)$$ be 4-point DFTs of $${x_1}\left[ n \right]$$ and $${x_2}\left[ n \right]$$, respectively. Another sequence $${X_3}(n)$$ is derived by taking 4-ponit inverse DFT of $${X_3}(k)$$= $${X_1}(k)$$$${X_2}(k)$$. The value of $${x_3}\left[ 2 \right]$$
Your input ____
4
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+2
-0.6
The N-point DFT X of a sequence x[n] 0 ≤ n ≤ N − 1 is given by
$$X\left[ k \right] = {1 \over {\sqrt N }}\,\,\sum\limits_{n = 0}^{N - 1} x \,[n\,]e{\,^{ - j{{2\pi } \over N}nk}}$$, 0$$ \le k \le N - 1$$
Denote this relation as X = DFT(x). For N= 4 which one of the following sequences satisfies DFT (DFT(x) ) = ___________.
A
x = $$\left[ {1\,2\,3\,4} \right]$$
B
x = $$\left[ {1\,2\,3\,2} \right]$$
C
x = $$\left[ {1\,3\,2\,2} \right]$$
D
x = $$\left[ {1\,2\,2\,3} \right]$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12