1
GATE ECE 1995
Subjective
+5
-0
Show that the system shown in Fig. is a double integator. In other words, prove that the transfer gain is given by
$${{{V_0}\,(s)} \over {{V_s}\,(s)}} = - {1 \over {{{(CR\,s)}^2}}}$$, assume ideal OP-Amp
$${{{V_0}\,(s)} \over {{V_s}\,(s)}} = - {1 \over {{{(CR\,s)}^2}}}$$, assume ideal OP-Amp

2
GATE ECE 1994
Subjective
+5
-0
Assuming that the amplifier shown in the Fig., below, is a voltage-controlled voltage source, show that the voltage transfer function of the network is given by
$$T(s) = {{{V_2}\,(s)} \over {{V_1}\,(s)}} = \,{K \over {{s^2} + \,(3 - K)\,s + 1}}$$
$$T(s) = {{{V_2}\,(s)} \over {{V_1}\,(s)}} = \,{K \over {{s^2} + \,(3 - K)\,s + 1}}$$
Questions Asked from Two Port Networks (Marks 5)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series
Discrete Time Signal Fourier Series Fourier Transform
Discrete Time Signal Z Transform
Continuous Time Linear Invariant System
Transmission of Signal Through Continuous Time LTI Systems
Discrete Time Linear Time Invariant Systems
Sampling
Continuous Time Signal Laplace Transform
Discrete Fourier Transform and Fast Fourier Transform
Transmission of Signal Through Discrete Time Lti Systems
Miscellaneous
Fourier Transform
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics