1

GATE ECE 2002

Subjective

+5

-0

Consider the network in Fig.

(a) Find its short-circuit admittance parameters.

(b) Find the open-ciruit impedance $${Z_{22}}$$.

2

GATE ECE 2001

Subjective

+5

-0

The admittance parameters of a 2-port network shown in Fig. are given by $${Y_{11}} = \,2\,\,mho$$, $${Y_{12}}$$ = - 0.5 mho, $${Y_{21}}$$ = 4.8 mho, $${Y_{22}}$$ = 1 mho. The output port is terminated with a load admittance $${Y_L}$$ = 0.2 mho. Find $${E_2}$$ for each of the following conditions:

(a) $${E_1} = \,10\,\angle \,{0^{ \circ \,}}\,V$$

(b) $${I_1} = \,10\,\angle \,{0^{ \circ \,}}\,A$$

(c) A source $$10\,\angle \,{0^{ \circ \,}}\,V$$ in series with a 0.25 $$\Omega $$ resistor is connected to the input port.

3

GATE ECE 1996

Subjective

+5

-0

Find the input resistance $${R_{in}}$$ of the infinite section resistive network shown in Fig.

4

GATE ECE 1996

Subjective

+5

-0

The open circuit impedance matrix $${Z_{OC}}$$ of a three-terminal two-port network with A as the input terminal, B as the output terminal, and C as the common terminal, is given as
$$$\left[ {{Z_{OC}}} \right] = \left[ {\matrix{
2 & 5 \cr
3 & 7 \cr
} } \right]$$$

Write down the short circuit admittance matrix $${{Y_{SC}}}$$ of the network viewed as a two-port network, but now taking B as the input terminal, C as the output terminal and A as the common terminal.

Questions Asked from Two Port Networks (Marks 5)

Number in Brackets after Paper Indicates No. of Questions

GATE ECE Subjects

Signals and Systems

Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous

Network Theory

Control Systems

Digital Circuits

General Aptitude

Electronic Devices and VLSI

Analog Circuits

Engineering Mathematics

Microprocessors

Communications

Electromagnetics