1

GATE ECE 2016 Set 1

Numerical

+2

-0

Consider a discreet memoryless source with alphabet $$S = \left\{ {{s_0},\,{s_1},\,{s_2},\,{s_3},\,{s_{4......}}} \right\}$$ and respective probabilities of occurrence $$P = \left\{ {{1 \over 2},\,{1 \over 4},\,{1 \over 8},\,{1 \over {16}},\,{1 \over {32}},......} \right\}$$. The entropy of the source (in bits) is__________.

Your input ____

2

GATE ECE 2014 Set 4

Numerical

+2

-0

Consider the Z- channel given in the figure. The input is 0 or 1 with equal probability.
If the output is 0, the probability that the input is also 0 equals____________________________________

Your input ____

3

GATE ECE 2014 Set 2

MCQ (Single Correct Answer)

+2

-0.6

The capacity of band-limited additive white Gaussian noise (AWGN) channel is given by $$C = \,W\,\,{\log _2}\left( {1 + {P \over {{\sigma ^2}\,W}}} \right)$$ bits per second (bps), where W is the channel bandwidth, P is the average power received and $${{\sigma ^2}}$$ is the one-sided power spectral density of the AWGN.

For a Fixed $${{P \over {{\sigma ^2}\,}} = 1000}$$, the channel capacity (in kbps) with infinite band width $$(W \to \infty )$$ is approximately

For a Fixed $${{P \over {{\sigma ^2}\,}} = 1000}$$, the channel capacity (in kbps) with infinite band width $$(W \to \infty )$$ is approximately

4

GATE ECE 2014 Set 1

Numerical

+2

-0

A fair coin is tossed repeatedly until a 'Head' appears for the first time. Let L be the number of tosses to get this first 'Head'. The entropy H (L) in bits is _______________.

Your input ____

Questions Asked from Fundamentals of Information Theory (Marks 2)

Number in Brackets after Paper Indicates No. of Questions

GATE ECE Subjects

Network Theory

Control Systems

Electronic Devices and VLSI

Analog Circuits

Digital Circuits

Microprocessors

Signals and Systems

Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform

Communications

Electromagnetics

General Aptitude