1
GATE ECE 2006
+2
-0.6
A two-port network is represented by ABCD parameters given by $$\left[ {\matrix{ {{V_1}} \cr {{I_1}} \cr } } \right] = \,\left[ {\matrix{ A & B \cr C & D \cr } } \right]\,\left[ {\matrix{ {{V_2}} \cr { - \,{I_2}} \cr } } \right]$$

If port-2 is terminated by $${R_L}$$, the input impedance seen at port-1 is given by

A
$${{A\, + \,B{R_L}} \over {C + \,D{R_L}}}$$
B
$${{\,A{R_L} + \,C} \over {B{R_L}\, + D}}$$
C
$${{\,D{R_L} + \,A} \over {\,B{R_L} + C}}$$
D
$${{\,B + A{R_L}} \over {D + \,C{R_L}}}$$
2
GATE ECE 2005
+2
-0.6

If R1 = R2 = R4 = R and R3 = 1.1R in the bridge circuit shown in figure, then the reading in the ideal voltmeter connected between a and b is A
0.238 V
B
0.138 V
C
-0.238 V
D
1 V
3
GATE ECE 2005
+2
-0.6
The h parameters of the circuit shown in Fig. are A
$$\,\left[ {\matrix{ {0.1} & {0.1} \cr { - \,0.1} & {0.3} \cr } } \right]$$
B
$$\,\left[ {\matrix{ {10} & {-1} \cr { \,1} & {0.05} \cr } } \right]$$
C
$$\left[ {\matrix{ {30} & {20} \cr {20} & {20} \cr } } \right]$$
D
$$\left[ {\matrix{ {10} & {1} \cr {-1} & {0.05} \cr } } \right]$$
4
GATE ECE 2004
+2
-0.6
For the lattice circuit shown in Fig., $${Z_a} = j\,2\,\Omega \,\,and\,\,{Z_b} = \,\,2\Omega$$. The values of the open circuit impedance parameters
$$Z\,\left[ {\matrix{ {{Z_{11}}} & {{Z_{12}}} \cr {{Z_{21}}} & {{Z_{22}}} \cr } } \right]\,$$ are A
$$\,\left[ {\matrix{ {1 - j} & {1 + j} \cr {1 + j} & {1 + j} \cr } } \right]$$
B
$$\,\left[ {\matrix{ {1 - j} & {1 + j} \cr {-1 + j} & {1 - j} \cr } } \right]$$
C
$$\,\left[ {\matrix{ {1 + j} & {1 + j} \cr {1 - j} & {1 - j} \cr } } \right]$$
D
$$\,\left[ {\matrix{ {1 + j} & {1 + j} \cr {-1 + j} & {1 + j} \cr } } \right]$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics
EXAM MAP
Joint Entrance Examination