1
GATE ECE 2007
+2
-0.6
A load of 50 $$\Omega$$ is connected in shunt in a 2-wire transmission line of $$Z_0$$ = 50 $$\Omega$$ as shown in the Fig. The 2-port scattering parameter matrix (S-matrix) of the shunt element is
A
$$\left[ {\matrix{ { - {1 \over 2}} & {{1 \over 2}} \cr {{1 \over 2}} & { - {1 \over 2}} \cr } } \right]$$
B
$$\left[ {\matrix{ 0 & 1 \cr 1 & 0 \cr } } \right]$$
C
$$\left[ {\matrix{ { - {1 \over 3}} & {{2 \over 3}} \cr {{2 \over 3}} & { - {1 \over 3}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{1 \over 4}} & { - {3 \over 4}} \cr { - {3 \over 4}} & { - {1 \over 4}} \cr } } \right]$$
2
GATE ECE 2007
+2
-0.6
The parallel branches of a 2-wire transmission line are terminated in 100 $$\Omega$$ and 200 $$\Omega$$ resistors as shown in the Fig. The characteristic impedance of the line is $$Z_0$$ = 50 $$\Omega$$ and each section has a length of $$\lambda /4$$. The voltage reflection coefficient $$\Gamma$$ at the input is:
A
$$- \,j\,{7 \over 5}$$
B
$$- \,\,{5 \over 7}$$
C
$$j\,\,{5 \over 7}$$
D
$${5 \over 7}$$
3
GATE ECE 2005
+2
-0.6
Voltage standing wave pattern in a lossless transmission line with characteristic impedance 50 $$\Omega$$ and a resistive load is shown in Fig. The value of the load resistance is
A
50 $$\Omega$$
B
200 $$\Omega$$
C
12.5 $$\Omega$$
D
0 $$\Omega$$
4
GATE ECE 2005
+2
-0.6
Characteristic impedance of a transmission line is 50$$\Omega$$. Input impedance of the open-circuited line is $${Z_{oc}} = 100\, + \,j\,\,150\Omega .$$ When the transmission line is short-circuited the value of the input impedance will be
A
50 $$\Omega$$
B
100 + j 150 $$\Omega$$
C
7.69 + j 11.54 $$\Omega$$
D
7.69 - j 11.54 $$\Omega$$
EXAM MAP
Medical
NEET