1
JEE Advanced 2024 Paper 2 Online
Numerical
+3
-0
Change Language

Let $S=\{1,2,3,4,5,6\}$ and $X$ be the set of all relations $R$ from $S$ to $S$ that satisfy both the following properties:

i. $R$ has exactly 6 elements.

ii. For each $(a, b) \in R$, we have $|a-b| \geq 2$.

Let $Y=\{R \in X$ : The range of $R$ has exactly one element $\}$ and $Z=\{R \in X: R$ is a function from $S$ to $S\}$.

Let $n(A)$ denote the number of elements in a set $A$.

If $n(X)={ }^m C_6$, then the value of $m$ is _____
Your input ____
2
JEE Advanced 2024 Paper 2 Online
Numerical
+3
-0
Change Language

Let $S=\{1,2,3,4,5,6\}$ and $X$ be the set of all relations $R$ from $S$ to $S$ that satisfy both the following properties:

i. $R$ has exactly 6 elements.

ii. For each $(a, b) \in R$, we have $|a-b| \geq 2$.

Let $Y=\{R \in X$ : The range of $R$ has exactly one element $\}$ and $Z=\{R \in X: R$ is a function from $S$ to $S\}$.

Let $n(A)$ denote the number of elements in a set $A$.

If the value of $n(Y)+n(Z)$ is $k^2$, then $|k|$ is _________.
Your input ____
3
JEE Advanced 2024 Paper 2 Online
Numerical
+3
-0
Change Language

Let $f:\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]$ be the function defined by $f(x)=\sin ^2 x$ and let $g:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty)$ be the function defined by $g(x)=\sqrt{\frac{\pi x}{2}-x^2}$.

The value of $2 \int\limits_0^{\frac{\pi}{2}} f(x) g(x) d x-\int\limits_0^{\frac{\pi}{2}} g(x) d x$ is ____________.
Your input ____
4
JEE Advanced 2024 Paper 2 Online
Numerical
+3
-0
Change Language

Let $f:\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]$ be the function defined by $f(x)=\sin ^2 x$ and let $g:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty)$ be the function defined by $g(x)=\sqrt{\frac{\pi x}{2}-x^2}$.

The value of $\frac{16}{\pi^3} \int\limits_0^{\frac{\pi}{2}} f(x) g(x) d x$ is ______.
Your input ____
JEE Advanced Papers
EXAM MAP