1
JEE Advanced 2024 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
A straight line drawn from the point $P(1,3,2)$, parallel to the line $\frac{x-2}{1}=\frac{y-4}{2}=\frac{z-6}{1}$, intersects the plane $L_1: x-y+3 z=6$ at the point $Q$. Another straight line which passes through $Q$ and is perpendicular to the plane $L_1$ intersects the plane $L_2: 2 x-y+z=-4$ at the point $R$. Then which of the following statements is (are) TRUE?
A
The length of the line segment $P Q$ is $\sqrt{6}$
B
The coordinates of $R$ are $(1,6,3)$
C
The centroid of the triangle $P Q R$ is $\left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right)$
D
The perimeter of the triangle $P Q R$ is $\sqrt{2}+\sqrt{6}+\sqrt{11}$
2
JEE Advanced 2024 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $A_1, B_1, C_1$ be three points in the $x y$-plane. Suppose that the lines $A_1 C_1$ and $B_1 C_1$ are tangents to the curve $y^2=8 x$ at $A_1$ and $B_1$, respectively. If $O=(0,0)$ and $C_1=(-4,0)$, then which of the following statements is (are) TRUE?
A
The length of the line segment $O A_1$ is $4 \sqrt{3}$
B
The length of the line segment $A_1 B_1$ is 16
C
The orthocenter of the triangle $A_1 B_1 C_1$ is $(0,0)$
D
The orthocenter of the triangle $A_1 B_1 C_1$ is $(1,0)$
3
JEE Advanced 2024 Paper 2 Online
Numerical
+4
-0
Change Language
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$, and $g: \mathbb{R} \rightarrow(0, \infty)$ be a function such that $g(x+y)=g(x) g(y)$ for all $x, y \in \mathbb{R}$. If $f\left(\frac{-3}{5}\right)=12$ and $g\left(\frac{-1}{3}\right)=2$, then the value of $\left(f\left(\frac{1}{4}\right)+g(-2)-8\right) g(0)$ is _________.
Your input ____
4
JEE Advanced 2024 Paper 2 Online
Numerical
+4
-0
Change Language
A bag contains $N$ balls out of which 3 balls are white, 6 balls are green, and the remaining balls are blue. Assume that the balls are identical otherwise. Three balls are drawn randomly one after the other without replacement. For $i=1,2,3$, let $W_i, G_i$, and $B_i$ denote the events that the ball drawn in the $i^{\text {th }}$ draw is a white ball, green ball, and blue ball, respectively. If the probability $P\left(W_1 \cap G_2 \cap B_3\right)=\frac{2}{5 N}$ and the conditional probability $P\left(B_3 \mid W_1 \cap G_2\right)=\frac{2}{9}$, then $N$ equals ________.
Your input ____
JEE Advanced Papers
EXAM MAP