1
JEE Advanced 2022 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of
$$
(\bar{z})^{2}+\frac{1}{z^{2}}
$$
are integers, then which of the following is/are possible value(s) of $|z|$ ?
2
JEE Advanced 2022 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Let $G$ be a circle of radius $R>0$. Let $G_{1}, G_{2}, \ldots, G_{n}$ be $n$ circles of equal radius $r>0$. Suppose each of the $n$ circles $G_{1}, G_{2}, \ldots, G_{n}$ touches the circle $G$ externally. Also, for $i=1,2, \ldots, n-1$, the circle $G_{i}$ touches $G_{i+1}$ externally, and $G_{n}$ touches $G_{1}$ externally. Then, which of the following statements is/are TRUE?
3
JEE Advanced 2022 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Let $\hat{\imath}, \hat{\jmath}$ and $\hat{k}$ be the unit vectors along the three positive coordinate axes. Let
$$ \begin{aligned} & \vec{a}=3 \hat{\imath}+\hat{\jmath}-\hat{k} \text {, } \\ & \vec{b}=\hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}, \quad b_{2}, b_{3} \in \mathbb{R} \text {, } \\ & \vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}, \quad c_{1}, c_{2}, c_{3} \in \mathbb{R} \end{aligned} $$
be three vectors such that $b_{2} b_{3}>0, \vec{a} \cdot \vec{b}=0$ and
$$ \left(\begin{array}{ccc} 0 & -c_{3} & c_{2} \\ c_{3} & 0 & -c_{1} \\ -c_{2} & c_{1} & 0 \end{array}\right)\left(\begin{array}{l} 1 \\ b_{2} \\ b_{3} \end{array}\right)=\left(\begin{array}{r} 3-c_{1} \\ 1-c_{2} \\ -1-c_{3} \end{array}\right) . $$
Then, which of the following is/are TRUE?
$$ \begin{aligned} & \vec{a}=3 \hat{\imath}+\hat{\jmath}-\hat{k} \text {, } \\ & \vec{b}=\hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}, \quad b_{2}, b_{3} \in \mathbb{R} \text {, } \\ & \vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}, \quad c_{1}, c_{2}, c_{3} \in \mathbb{R} \end{aligned} $$
be three vectors such that $b_{2} b_{3}>0, \vec{a} \cdot \vec{b}=0$ and
$$ \left(\begin{array}{ccc} 0 & -c_{3} & c_{2} \\ c_{3} & 0 & -c_{1} \\ -c_{2} & c_{1} & 0 \end{array}\right)\left(\begin{array}{l} 1 \\ b_{2} \\ b_{3} \end{array}\right)=\left(\begin{array}{r} 3-c_{1} \\ 1-c_{2} \\ -1-c_{3} \end{array}\right) . $$
Then, which of the following is/are TRUE?
4
JEE Advanced 2022 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
For $x \in \mathbb{R}$, let the function $y(x)$ be the solution of the differential equation
$$ \frac{d y}{d x}+12 y=\cos \left(\frac{\pi}{12} x\right), \quad y(0)=0 $$
Then, which of the following statements is/are TRUE ?
$$ \frac{d y}{d x}+12 y=\cos \left(\frac{\pi}{12} x\right), \quad y(0)=0 $$
Then, which of the following statements is/are TRUE ?
Paper analysis
Total Questions
Chemistry
18
Mathematics
18
Physics
18
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978