1
JEE Advanced 2022 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
In Circuit-1 and Circuit- 2 shown in the figures, $R_{1}=1 \,\Omega, R_{2}=2 \,\Omega$ and $R_{3}=3 \,\Omega$.

$P_{1}$ and $P_{2}$ are the power dissipations in Circuit-1 and Circuit-2 when the switches $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ are in open conditions, respectively.

$Q_{1}$ and $Q_{2}$ are the power dissipations in Circuit-1 and Circuit-2 when the switches $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ are in closed conditions, respectively.

JEE Advanced 2022 Paper 2 Online Physics - Current Electricity Question 4 English
Which of the following statement(s) is(are) correct?
A
When a voltage source of $6 V$ is connected across $\mathrm{A}$ and $\mathrm{B}$ in both circuits, $P_{1} < P_{2}$.
B
When a constant current source of $2 \mathrm{Amp}$ is connected across A and B in both circuits, $P_{1}>P_{2}$.
C
When a voltage source of $6 V$ is connected across $\mathrm{A}$ and $\mathrm{B}$ in Circuit-1, $Q_{1}>P_{1}$.
D
When a constant current source of $2 \mathrm{Amp}$ is connected across A and $\mathrm{B}$ in both circuits, $Q_{2} < Q_{1}$.
2
JEE Advanced 2022 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
A bubble has surface tension $S$. The ideal gas inside the bubble has ratio of specific heats $\gamma=$ $\frac{5}{3}$. The bubble is exposed to the atmosphere and it always retains its spherical shape. When the atmospheric pressure is $P_{a 1}$, the radius of the bubble is found to be $r_{1}$ and the temperature of the enclosed gas is $T_{1}$. When the atmospheric pressure is $P_{a 2}$, the radius of the bubble and the temperature of the enclosed gas are $r_{2}$ and $T_{2}$, respectively.

Which of the following statement(s) is(are) correct?
A
If the surface of the bubble is a perfect heat insulator, then $\left(\frac{r_{1}}{r_{2}}\right)^{5}=\frac{P_{a 2}+\frac{2 S}{r_{2}}}{P_{a 1}+\frac{2 S}{r_{1}}}$.
B
If the surface of the bubble is a perfect heat insulator, then the total internal energy of the bubble including its surface energy does not change with the external atmospheric pressure.
C
If the surface of the bubble is a perfect heat conductor and the change in atmospheric temperature is negligible, then $\left(\frac{r_{1}}{r_{2}}\right)^{3}=\frac{P_{a 2}+\frac{4 S}{r_{2}}}{P_{a 1}+\frac{4 S}{r_{1}}}$.
D
If the surface of the bubble is a perfect heat insulator, then $\left(\frac{T_{2}}{T_{1}}\right)^{\frac{5}{2}}=\frac{P_{a 2}+\frac{4 S}{r_{2}}}{P_{a 1}+\frac{4 S}{r_{1}}}$.
3
JEE Advanced 2022 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
A disk of radius $\mathrm{R}$ with uniform positive charge density $\sigma$ is placed on the $x y$ plane with its center at the origin. The Coulomb potential along the $z$-axis is

$$ V(z)=\frac{\sigma}{2 \epsilon_{0}}\left(\sqrt{R^{2}+z^{2}}-z\right) . $$

A particle of positive charge $q$ is placed initially at rest at a point on the $z$ axis with $z=z_{0}$ and $z_{0}>0$. In addition to the Coulomb force, the particle experiences a vertical force $\vec{F}=-c \hat{k}$ with $c>0$. Let $\beta=\frac{2 c \epsilon_{0}}{q \sigma}$.

Which of the following statement(s) is(are) correct?
A
For $\beta=\frac{1}{4}$ and $z_{0}=\frac{25}{7} R$, the particle reaches the origin.
B
For $\beta=\frac{1}{4}$ and $z_{0}=\frac{3}{7} R$, the particle reaches the origin.
C
For $\beta=\frac{1}{4}$ and $z_{0}=\frac{R}{\sqrt{3}}$, the particle returns back to $z=z_{0}$.
D
For $\beta>1$ and $z_{0}>0$, the particle always reaches the origin.
4
JEE Advanced 2022 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language

A double slit setup is shown in the figure. One of the slits is in medium 2 of refractive index $n_{2}$. The other slit is at the interface of this medium with another medium 1 of refractive index $n_{1}\left(\neq n_{2}\right)$. The line joining the slits is perpendicular to the interface and the distance between the slits is $d$. The slit widths are much smaller than $d$. A monochromatic parallel beam of light is incident on the slits from medium 1. A detector is placed in medium 2 at a large distance from the slits, and at an angle $\theta$ from the line joining them, so that $\theta$ equals the angle of refraction of the beam. Consider two approximately parallel rays from the slits received by the detector.

JEE Advanced 2022 Paper 2 Online Physics - Wave Optics Question 4 English

Which of the following statement(s) is(are) correct?

A
The phase difference between the two rays is independent of $d$.
B
The two rays interfere constructively at the detector.
C
The phase difference between the two rays depends on $n_{1}$ but is independent of $n_{2}$.
D
The phase difference between the two rays vanishes only for certain values of $d$ and the angle of incidence of the beam, with $\theta$ being the corresponding angle of refraction.
JEE Advanced Papers
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12