1
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
Change Language
Consider the hyperbola

$$ \frac{x^{2}}{100}-\frac{y^{2}}{64}=1 $$

with foci at $S$ and $S_{1}$, where $S$ lies on the positive $x$-axis. Let $P$ be a point on the hyperbola, in the first quadrant. Let $\angle S P S_{1}=\alpha$, with $\alpha<\frac{\pi}{2}$. The straight line passing through the point $S$ and having the same slope as that of the tangent at $P$ to the hyperbola, intersects the straight line $S_{1} P$ at $P_{1}$. Let $\delta$ be the distance of $P$ from the straight line $S P_{1}$, and $\beta=S_{1} P$. Then the greatest integer less than or equal to $\frac{\beta \delta}{9} \sin \frac{\alpha}{2}$ is ________.
Your input ____
2
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
Change Language
Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$ f(x)=x^{2}+\frac{5}{12} \quad \text { and } \quad g(x)= \begin{cases}2\left(1-\frac{4|x|}{3}\right), & |x| \leq \frac{3}{4} \\ 0, & |x|>\frac{3}{4}\end{cases} $$

If $\alpha$ is the area of the region

$$ \left\{(x, y) \in \mathbb{R} \times \mathbb{R}:|x| \leq \frac{3}{4}, 0 \leq y \leq \min \{f(x), g(x)\}\right\}, $$

then the value of $9 \alpha$ is
Your input ____
3
JEE Advanced 2022 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $P Q R S$ be a quadrilateral in a plane, where

$Q R=1, \angle P Q R=\angle Q R S=70^{\circ}, \angle P Q S=15^{\circ}$ and $\angle P R S=40^{\circ}$.

If $\angle R P S=\theta^{\circ}, P Q=\alpha$ and $P S=\beta$, then the interval(s) that contain(s) the value of

$4 \alpha \beta \sin \theta^{\circ}$ is/are
A
$(0, \sqrt{2})$
B
$(1,2)$
C
$(\sqrt{2}, 3)$
D
$(2 \sqrt{2}, 3 \sqrt{2})$
4
JEE Advanced 2022 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let

$$ \alpha=\sum\limits_{k = 1}^\infty {{{\sin }^{2k}}\left( {{\pi \over 6}} \right)} $$

Let $g:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$ g(x)=2^{\alpha x}+2^{\alpha(1-x)} . $$

Then, which of the following statements is/are TRUE ?
A
The minimum value of $g(x)$ is $2^{\frac{7}{6}}$
B
The maximum value of $g(x)$ is $1+2^{\frac{1}{3}}$
C
The function $g(x)$ attains its maximum at more than one point
D
The function $g(x)$ attains its minimum at more than one point
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12