1
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
Change Language
A particle of mass $1 \mathrm{~kg}$ is subjected to a force which depends on the position as $\vec{F}=$ $-k(x \hat{\imath}+y \hat{\jmath}) \mathrm{kg}\, \mathrm{m} \mathrm{s}^{-2}$ with $k=1 \mathrm{~kg} \mathrm{~s}^{-2}$. At time $t=0$, the particle's position $\vec{r}=$ $\left(\frac{1}{\sqrt{2}} \hat{\imath}+\sqrt{2} \hat{\jmath}\right) m$ and its velocity $\vec{v}=\left(-\sqrt{2} \hat{\imath}+\sqrt{2} \hat{\jmath}+\frac{2}{\pi} \hat{k}\right) m s^{-1}$. Let $v_{x}$ and $v_{y}$ denote the $x$ and the $y$ components of the particle's velocity, respectively. Ignore gravity. When $z=0.5 \mathrm{~m}$, the value of $\left(x v_{y}-y v_{x}\right)$ is __________ $m^{2} s^{-1}$.
Your input ____
2
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
Change Language
In a radioactive decay chain reaction, ${ }_{90}^{230} \mathrm{Th}$ nucleus decays into ${ }_{84}^{214} \mathrm{Po}$ nucleus. The ratio of the number of $\alpha$ to number of $\beta^{-}$particles emitted in this process is ________.
Your input ____
3
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
Change Language

Two resistances $R_{1}=X \Omega$ and $R_{2}=1 \Omega$ are connected to a wire $A B$ of uniform resistivity, as shown in the figure. The radius of the wire varies linearly along its axis from $0.2 \mathrm{~mm}$ at $A$ to $1 \mathrm{~mm}$ at $B$. A galvanometer $(\mathrm{G})$ connected to the center of the wire, $50 \mathrm{~cm}$ from each end along its axis, shows zero deflection when $A$ and $B$ are connected to a battery. The value of $X$ is ____________.

JEE Advanced 2022 Paper 2 Online Physics - Current Electricity Question 5 English

Your input ____
4
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
Change Language

In a particular system of units, a physical quantity can be expressed in terms of the electric charge $e$, electron mass $m_{e}$, Planck's constant $h$, and Coulomb's constant $k=\frac{1}{4 \pi \epsilon_{0}}$, where $\epsilon_{0}$ is the permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is $[B]=[e]^{\alpha}\left[m_{e}\right]^{\beta}[h]^{\gamma}[k]^{\delta}$. The value of $\alpha+\beta+\gamma+\delta$ is _______.

Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12