1
JEE Advanced 2020 Paper 2 Offline
Numerical
+4
-0
Two fair dice, each with faces numbered 1, 2, 3, 4, 5 and 6, are rolled together and the sum of the numbers on the faces is observed. This process is repeated till the sum is either a prime number or a perfect square. Suppose the sum turns out to be a perfect square before it turns out to be a prime number. If p is the probability that this perfect square is an odd number, then the value of 14p is ..........
Your input ____
2
JEE Advanced 2020 Paper 2 Offline
Numerical
+4
-0
Let the function f : [0, 1] $$ \to $$ R be defined by
$$f(x) = {{{4^x}} \over {{4^x} + 2}}$$
Then the value of $$f\left( {{1 \over {40}}} \right) + f\left( {{2 \over {40}}} \right) + f\left( {{3 \over {40}}} \right) + ... + f\left( {{{39} \over {40}}} \right) - f\left( {{1 \over 2}} \right)$$ is ..........
$$f(x) = {{{4^x}} \over {{4^x} + 2}}$$
Then the value of $$f\left( {{1 \over {40}}} \right) + f\left( {{2 \over {40}}} \right) + f\left( {{3 \over {40}}} \right) + ... + f\left( {{{39} \over {40}}} \right) - f\left( {{1 \over 2}} \right)$$ is ..........
Your input ____
3
JEE Advanced 2020 Paper 2 Offline
Numerical
+4
-0
Let $$f:R \to R$$ be a differentiable function such that its derivative f' is continuous and f($$\pi $$) = $$-$$6.
If $$F:[0,\pi ] \to R$$ is defined by $$F(x) = \int_0^x {f(t)dt} $$, and if $$\int_0^\pi {(f'(x)} + F(x))\cos x\,dx$$ = 2
then the value of f(0) is ...........
If $$F:[0,\pi ] \to R$$ is defined by $$F(x) = \int_0^x {f(t)dt} $$, and if $$\int_0^\pi {(f'(x)} + F(x))\cos x\,dx$$ = 2
then the value of f(0) is ...........
Your input ____
4
JEE Advanced 2020 Paper 2 Offline
Numerical
+4
-0
Let the function $$f:(0,\pi ) \to R$$ be defined by $$f(\theta ) = {(\sin \theta + \cos \theta )^2} + {(\sin \theta - \cos \theta )^4}$$
Suppose the function f has a local minimum at $$\theta $$ precisely when $$\theta \in \{ {\lambda _1}\pi ,....,{\lambda _r}\pi \} $$, where $$0 < {\lambda _1} < ...{\lambda _r} < 1$$. Then the value of $${\lambda _1} + ... + {\lambda _r}$$ is .............
Suppose the function f has a local minimum at $$\theta $$ precisely when $$\theta \in \{ {\lambda _1}\pi ,....,{\lambda _r}\pi \} $$, where $$0 < {\lambda _1} < ...{\lambda _r} < 1$$. Then the value of $${\lambda _1} + ... + {\lambda _r}$$ is .............
Your input ____
Paper analysis
Total Questions
Chemistry
18
Mathematics
18
Physics
18
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978