1
JEE Advanced 2020 Paper 2 Offline
Numerical
+3
-1
The value of the limit
$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{4\sqrt 2 (\sin 3x + \sin x)} \over {\left( {2\sin 2x\sin {{3x} \over 2} + \cos {{5x} \over 2}} \right) - \left( {\sqrt 2 + \sqrt 2 \cos 2x + \cos {{3x} \over 2}} \right)}}$$
is ...........
$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{4\sqrt 2 (\sin 3x + \sin x)} \over {\left( {2\sin 2x\sin {{3x} \over 2} + \cos {{5x} \over 2}} \right) - \left( {\sqrt 2 + \sqrt 2 \cos 2x + \cos {{3x} \over 2}} \right)}}$$
is ...........
Your input ____
2
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Let b be a nonzero real number. Suppose f : R $$ \to $$ R is a differentiable function such that f(0) = 1. If the derivative f' of f satisfies the equation $$f'(x) = {{f(x)} \over {{b^2} + {x^2}}}$$
for all x$$ \in $$R, then which of the following statements is/are TRUE?
for all x$$ \in $$R, then which of the following statements is/are TRUE?
3
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Let a and b be positive real numbers such that a > 1 and b < a. Let P be a point in the first quadrant that lies on the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$. Suppose the tangent to the hyperbola at P passes through the point (1, 0), and suppose the normal to the hyperbola at P cuts off equal intercepts on the coordinate axes. Let $$\Delta $$ denote the area of the triangle formed by the tangent at P, the normal at P and the X-axis. If e denotes the eccentricity of the hyperbola, then which of the following statements is/are TRUE?
4
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Let f : R $$ \to $$ R and g : R $$ \to $$ R be functions
satisfying f(x + y) = f(x) + f(y) + f(x)f(y)
and f(x) = xg(x) for all x, y$$ \in $$R.
If $$\mathop {\lim }\limits_{x \to 0} g(x) = 1$$, then which of the following statements is/are TRUE?
satisfying f(x + y) = f(x) + f(y) + f(x)f(y)
and f(x) = xg(x) for all x, y$$ \in $$R.
If $$\mathop {\lim }\limits_{x \to 0} g(x) = 1$$, then which of the following statements is/are TRUE?
Paper analysis
Total Questions
Chemistry
18
Mathematics
18
Physics
18
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978