1
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $$\alpha $$2 + $$\beta $$2 + $$\gamma $$2 $$ \ne $$ 0 and $$\alpha $$ + $$\gamma $$ = 1. Suppose the point (3, 2, $$-$$1) is the mirror image of the point (1, 0, $$-$$1) with respect to the plane $$\alpha $$x + $$\beta $$y + $$\gamma $$z = $$\delta $$. Then which of the following statements is/are TRUE?
A
$$\alpha $$ + $$\beta $$ = 2
B
$$\delta $$ $$-$$ $$\gamma $$ = 3
C
$$\delta $$ + $$\beta $$ = 4
D
$$\alpha $$ + $$\beta $$ + $$\gamma $$ = $$\delta $$
2
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let a and b be positive real numbers. Suppose $$PQ = a\widehat i + b\widehat j$$ and $$PS = a\widehat i - b\widehat j$$ are adjacent sides of a parallelogram PQRS. Let u and v be the projection vectors of $$w = \widehat i + \widehat j$$ along PQ and PS, respectively. If |u| + |v| = |w| and if the area of the parallelogram PQRS is 8, then which of the following statements is/are TRUE?
A
a + b = 4
B
a $$-$$ b = 2
C
The length of the diagonal PR of the parallelogram PQRS is 4
D
w is an angle bisector of the vectors PQ and PS
3
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
For non-negative integers s and r, let

$$\left( {\matrix{ s \cr r \cr } } \right) = \left\{ {\matrix{ {{{s!} \over {r!(s - r)!}}} & {if\,r \le \,s,} \cr 0 & {if\,r\, > \,s} \cr } } \right.$$

For positive integers m and n, let

$$g(m,\,n) = \sum\limits_{p = 0}^{m + n} {{{f(m,n,p)} \over {\left( {\matrix{ {n + p} \cr p \cr } } \right)}}} $$

where for any non-negative integer p,

$$f(m,n,p) = \sum\limits_{i = 0}^p {\left( {\matrix{ m \cr i \cr } } \right)\left( {\matrix{ {n + i} \cr p \cr } } \right)\left( {\matrix{ {p + n} \cr {p - i} \cr } } \right)} $$

Then which of the following statements is/are TRUE?
A
g(m, n) = g(n, m) for all positive integers m, n
B
g(m, n + 1) = g(m + 1, n) for all positive integers m, n
C
g(2m, 2n) = 2g(m, n) for all positive integers m, n
D
g(2m, 2n) = (g(m, n))2 for all positive integers m, n
4
JEE Advanced 2020 Paper 2 Offline
Numerical
+4
-0
Change Language
An engineer is required to visit a factory for exactly four days during the first 15 days of every month and it is mandatory that no two visits take place on consecutive days. Then the number of all possible ways in which such visits to the factory can be made by the engineer during 1-15 June 2021 is ...........
Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12