1
JEE Advanced 2020 Paper 2 Offline
Numerical
+3
-1
Change Language
Let the functions $$f:( - 1,1) \to R$$ and $$g:( - 1,1) \to ( - 1,1)$$ be defined by $$f(x) = |2x - 1| + |2x + 1|$$ and $$g(x) = x - [x]$$, where [x] denotes the greatest integer less than or equal to x. Let $$f\,o\,g:( - 1,1) \to R$$ be the composite function defined by $$(f\,o\,g)(x) = f(g(x))$$. Suppose c is the number of points in the interval ($$-$$1, 1) at which $$f\,o\,g$$ is NOT continuous, and suppose d is the number of points in the interval ($$-$$1, 1) at which $$f\,o\,g$$ is NOT differentiable. Then the value of c + d is ............
Your input ____
2
JEE Advanced 2020 Paper 2 Offline
Numerical
+3
-1
Change Language
The value of the limit

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{4\sqrt 2 (\sin 3x + \sin x)} \over {\left( {2\sin 2x\sin {{3x} \over 2} + \cos {{5x} \over 2}} \right) - \left( {\sqrt 2 + \sqrt 2 \cos 2x + \cos {{3x} \over 2}} \right)}}$$

is ...........
Your input ____
3
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let b be a nonzero real number. Suppose f : R $$ \to $$ R is a differentiable function such that f(0) = 1. If the derivative f' of f satisfies the equation $$f'(x) = {{f(x)} \over {{b^2} + {x^2}}}$$

for all x$$ \in $$R, then which of the following statements is/are TRUE?
A
If b > 0, then f is an increasing function
B
If b < 0, then f is a decreasing function
C
f(x) f($$-$$x) = 1 for all x$$ \in $$R
D
f(x) $$-$$f($$-$$x) = 0 for all x$$ \in $$R
4
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let a and b be positive real numbers such that a > 1 and b < a. Let P be a point in the first quadrant that lies on the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$. Suppose the tangent to the hyperbola at P passes through the point (1, 0), and suppose the normal to the hyperbola at P cuts off equal intercepts on the coordinate axes. Let $$\Delta $$ denote the area of the triangle formed by the tangent at P, the normal at P and the X-axis. If e denotes the eccentricity of the hyperbola, then which of the following statements is/are TRUE?
A
$$1 < e < \sqrt 2 $$
B
$$\sqrt 2 < e < 2$$
C
$$\Delta = {a^4}$$
D
$$\Delta = {b^4}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12