1
JEE Advanced 2019 Paper 1 Offline
Numerical
+3
-0
Schemes 1 and 2 describe the conversion of P to Q and R to S, respectively. Scheme 3 describes the synthesis of T from Q and S. The total number of Br atoms in a molecule of T is .................
Your input ____
2
JEE Advanced 2019 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let S be the set of all complex numbers z satisfying $$\left| {z - 2 + i} \right| \ge \sqrt 5 $$. If the complex number z0 is such that $${1 \over {\left| {{z_0} - 1} \right|}}$$ is the maximum of the set $$\left\{ {{1 \over {\left| {{z_0} - 1} \right|}}:z \in S} \right\}$$, then the principal argument of $${{4 - {z_0} - {{\overline z }_0}} \over {{z_0} - {{\overline z }_0} + 2i}}$$ is
3
JEE Advanced 2019 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$M = \left[ {\matrix{
{{{\sin }^4}\theta } \cr
{1 + {{\cos }^2}\theta } \cr
} \matrix{
{ - 1 - {{\sin }^2}\theta } \cr
{{{\cos }^4}\theta } \cr
} } \right] = \alpha I + \beta {M^{ - 1}}$$,
where $$\alpha $$ = $$\alpha $$($$\theta $$) and $$\beta $$ = $$\beta $$($$\theta $$) are real numbers, and I is the 2 $$ \times $$ 2 identity matrix. If $$\alpha $$* is the minimum of the set {$$\alpha $$($$\theta $$) : $$\theta $$ $$ \in $$ [0, 2$$\pi $$)} and {$$\beta $$($$\theta $$) : $$\theta $$ $$ \in $$ [0, 2$$\pi $$)}, then the value of $$\alpha $$* + $$\beta $$* is
where $$\alpha $$ = $$\alpha $$($$\theta $$) and $$\beta $$ = $$\beta $$($$\theta $$) are real numbers, and I is the 2 $$ \times $$ 2 identity matrix. If $$\alpha $$* is the minimum of the set {$$\alpha $$($$\theta $$) : $$\theta $$ $$ \in $$ [0, 2$$\pi $$)} and {$$\beta $$($$\theta $$) : $$\theta $$ $$ \in $$ [0, 2$$\pi $$)}, then the value of $$\alpha $$* + $$\beta $$* is
4
JEE Advanced 2019 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
A line y = mx + 1 intersects the circle $${(x - 3)^2} + {(y + 2)^2}$$ = 25 at the points P and Q. If the midpoint of the line segment PQ has x-coordinate $$ - {3 \over 5}$$, then which one of the following options is correct?
Paper analysis
Total Questions
Chemistry
18
Mathematics
18
Physics
18
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978