1
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
In a non-right-angled triangle $$\Delta $$PQR, let p, q, r denote the lengths of the sides opposite to the angles At P, Q, R respectively. The median from R meets the side PQ at S, the perpendicular from P meets the side QR at E, and RS and PE intersect at O. If p = $${\sqrt 3 }$$, q = 1, and the radius of the circumcircle of the $$\Delta $$PQR equals 1, then which of the following options is/are correct?
A
Length of OE = $${1 \over 6}$$
B
Length of RS = $${{\sqrt 7 } \over 2}$$
C
Area of $$\Delta $$SOE = $${{\sqrt 3 } \over {12}}$$
D
Radius of incircle of $$\Delta $$PQR = $${{\sqrt 3 } \over {2}}$$($${2 - \sqrt 3 }$$)
2
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let $$\alpha $$ and $$\beta $$ be the roots of$${x^2} - x - 1 = 0$$, with $$\alpha $$ > $$\beta $$. For all positive integers n, define

$${a_n} = {{{\alpha ^n} - {\beta ^n}} \over {\alpha - \beta }},\,n \ge 1$$

$${b_1} = 1\,and\,{b_n} = {a_{n - 1}} + {a_{n + 1}},\,n \ge 2$$

Then which of the following options is/are correct?
A
$$\sum\limits_{n = 1}^\infty {{{{b_n}} \over {{{10}^n}}}} = {8 \over {89}}$$
B
bn = $$\alpha $$n + $$\beta $$n for all n $$ \ge $$ 1
C
a1 + a2 + a3 + ... + an = an+2 $$ - $$ 1 for all n $$ \ge $$ 1
D
$$\sum\limits_{n = 1}^\infty {{{{a_n}} \over {{{10}^n}}}} = {10 \over {89}}$$
3
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let L1 and L2 denote the lines

$$r = \widehat i + \lambda ( - \widehat i + 2\widehat j + 2\widehat k)$$, $$\lambda $$$$ \in $$ R

and $$r = \mu (2\widehat i - \widehat j + 2\widehat k),\,\mu \in R$$

respectively. If L3 is a line which is perpendicular to both L1 and L2 and cuts both of them, then which of the following options describe(s) L3?
A
$$r = {2 \over 9}(2\widehat i - \widehat j + 2\widehat k) + t(2\widehat i + 2\widehat j - \widehat k),\,t \in R$$
B
$$r = {1 \over 3}(2\widehat i + k) + t(2\widehat i + 2\widehat j - \widehat k),\,t \in R$$
C
$$r = {2 \over 9}(4\widehat i + \widehat j + \widehat k) + t(2\widehat i + 2\widehat j - \widehat k),\,t \in R$$
D
r = $$t(2\widehat i + 2\widehat j - \widehat k)$$, $$t \in R$$
4
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
There are three bags B1, B2 and B3. The bag B1 contains 5 red and 5 green balls, B2 contains 3 red and 5 green balls, and B3 contains 5 red and 3 green balls. Bags B1, B2 and B3 have probabilities $${3 \over {10}}$$, $${3 \over {10}}$$ and $${4 \over {10}}$$ respectively of being chosen. A bag is selected at random and a ball is chosen at random from the bag. Then which of the following options is/are correct?
A
Probability that the chosen ball is green, given that the selected bag is B3, equals $${3 \over 8}$$.
B
Probability that the selected bag is B3, given that the chosen ball is green, equals $${5 \over 13}$$.
C
Probability that the chosen ball is green equals $${39 \over 80}$$.
D
Probability that the selected bag is B3 and the chosen ball is green equals $${3 \over 10}$$.
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12