1
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$M = \left[ {\matrix{
0 & 1 & a \cr
1 & 2 & 3 \cr
3 & b & 1 \cr
} } \right]$$ and
adj $$M = \left[ {\matrix{ { - 1} & 1 & { - 1} \cr 8 & { - 6} & 2 \cr { - 5} & 3 & { - 1} \cr } } \right]$$
where a and b are real numbers. Which of the following options is/are correct?
adj $$M = \left[ {\matrix{ { - 1} & 1 & { - 1} \cr 8 & { - 6} & 2 \cr { - 5} & 3 & { - 1} \cr } } \right]$$
where a and b are real numbers. Which of the following options is/are correct?
2
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let f : R $$ \to $$ R be given by
$$f(x) = \left\{ {\matrix{ {{x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 3x + 1,} & {x < 0;} \cr {{x^2} - x + 1,} & {0 \le x < 1;} \cr {{2 \over 3}{x^3} - 4{x^2} + 7x - {8 \over 3},} & {1 \le x < 3;} \cr {(x - 2){{\log }_e}(x - 2) - x + {{10} \over 3},} & {x \ge 3;} \cr } } \right\}$$
Then which of the following options is/are correct?
$$f(x) = \left\{ {\matrix{ {{x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 3x + 1,} & {x < 0;} \cr {{x^2} - x + 1,} & {0 \le x < 1;} \cr {{2 \over 3}{x^3} - 4{x^2} + 7x - {8 \over 3},} & {1 \le x < 3;} \cr {(x - 2){{\log }_e}(x - 2) - x + {{10} \over 3},} & {x \ge 3;} \cr } } \right\}$$
Then which of the following options is/are correct?
3
JEE Advanced 2019 Paper 1 Offline
Numerical
+3
-0
Let S be the sample space of all 3 $$ \times $$ 3 matrices with entries from the set {0, 1}. Let the events E1 and E2 be given by
E1 = {A$$ \in $$S : det A = 0} and
E2 = {A$$ \in $$S : sum of entries of A is 7}.
If a matrix is chosen at random from S, then the conditional probability P(E1 | E2) equals ...............
E1 = {A$$ \in $$S : det A = 0} and
E2 = {A$$ \in $$S : sum of entries of A is 7}.
If a matrix is chosen at random from S, then the conditional probability P(E1 | E2) equals ...............
Your input ____
4
JEE Advanced 2019 Paper 1 Offline
Numerical
+3
-0
Let the point B be the reflection of the point A(2, 3) with respect to the line $$8x - 6y - 23 = 0$$. Let $$\Gamma_{A} $$ and $$\Gamma_{B} $$ be circles of radii 2 and 1 with centres A and B respectively. Let T be a common tangent to the circles $$\Gamma_{A} $$ and $$\Gamma_{B} $$ such that both the circles are on the same side of T. If C is the point of intersection of T and the line passing through A and B, then the length of the line segment AC is .................
Your input ____
Paper analysis
Total Questions
Chemistry
18
Mathematics
18
Physics
18
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978