1
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
There are three bags B1, B2 and B3. The bag B1 contains 5 red and 5 green balls, B2 contains 3 red and 5 green balls, and B3 contains 5 red and 3 green balls. Bags B1, B2 and B3 have probabilities $${3 \over {10}}$$, $${3 \over {10}}$$ and $${4 \over {10}}$$ respectively of being chosen. A bag is selected at random and a ball is chosen at random from the bag. Then which of the following options is/are correct?
A
Probability that the chosen ball is green, given that the selected bag is B3, equals $${3 \over 8}$$.
B
Probability that the selected bag is B3, given that the chosen ball is green, equals $${5 \over 13}$$.
C
Probability that the chosen ball is green equals $${39 \over 80}$$.
D
Probability that the selected bag is B3 and the chosen ball is green equals $${3 \over 10}$$.
2
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let $$M = \left[ {\matrix{ 0 & 1 & a \cr 1 & 2 & 3 \cr 3 & b & 1 \cr } } \right]$$ and

adj $$M = \left[ {\matrix{ { - 1} & 1 & { - 1} \cr 8 & { - 6} & 2 \cr { - 5} & 3 & { - 1} \cr } } \right]$$

where a and b are real numbers. Which of the following options is/are correct?
A
det(adj M2) = 81
B
If $$M\left[ {\matrix{ \alpha \cr \beta \cr \gamma \cr } } \right] = \left[ {\matrix{ 1 \cr 2 \cr 3 \cr } } \right]$$, then $$\alpha - \beta + \gamma = 3$$
C
$${(adj\,M)^{ - 1}} + adj\,{M^{ - 1}} = - M$$
D
a + b = 3
3
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let f : R $$ \to $$ R be given by

$$f(x) = \left\{ {\matrix{ {{x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 3x + 1,} & {x < 0;} \cr {{x^2} - x + 1,} & {0 \le x < 1;} \cr {{2 \over 3}{x^3} - 4{x^2} + 7x - {8 \over 3},} & {1 \le x < 3;} \cr {(x - 2){{\log }_e}(x - 2) - x + {{10} \over 3},} & {x \ge 3;} \cr } } \right\}$$

Then which of the following options is/are correct?
A
f is increasing on ($$ - $$$$\infty $$, 0)
B
f' is not differentiable at x = 1
C
f is onto
D
f' has a local maximum at x = 1
4
JEE Advanced 2019 Paper 1 Offline
Numerical
+3
-0
Change Language
Let S be the sample space of all 3 $$ \times $$ 3 matrices with entries from the set {0, 1}. Let the events E1 and E2 be given by

E1 = {A$$ \in $$S : det A = 0} and

E2 = {A$$ \in $$S : sum of entries of A is 7}.

If a matrix is chosen at random from S, then the conditional probability P(E1 | E2) equals ...............
Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12