1
JEE Advanced 2019 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $$M = \left[ {\matrix{ {{{\sin }^4}\theta } \cr {1 + {{\cos }^2}\theta } \cr } \matrix{ { - 1 - {{\sin }^2}\theta } \cr {{{\cos }^4}\theta } \cr } } \right] = \alpha I + \beta {M^{ - 1}}$$,

where $$\alpha $$ = $$\alpha $$($$\theta $$) and $$\beta $$ = $$\beta $$($$\theta $$) are real numbers, and I is the 2 $$ \times $$ 2 identity matrix. If $$\alpha $$* is the minimum of the set {$$\alpha $$($$\theta $$) : $$\theta $$ $$ \in $$ [0, 2$$\pi $$)} and {$$\beta $$($$\theta $$) : $$\theta $$ $$ \in $$ [0, 2$$\pi $$)}, then the value of $$\alpha $$* + $$\beta $$* is
A
$$ - {{17} \over {16}}$$
B
$$ - {{31} \over {16}}$$
C
$$ - {{37} \over {16}}$$
D
$$ - {{29} \over {16}}$$
2
JEE Advanced 2019 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
A line y = mx + 1 intersects the circle $${(x - 3)^2} + {(y + 2)^2}$$ = 25 at the points P and Q. If the midpoint of the line segment PQ has x-coordinate $$ - {3 \over 5}$$, then which one of the following options is correct?
A
6 $$ \le $$ m < 8
B
$$ - $$3 $$ \le $$ m < $$ - $$1
C
4 $$ \le $$ m < 6
D
2 $$ \le $$ m < 4
3
JEE Advanced 2019 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
The area of the region

{(x, y) : xy $$ \le $$ 8, 1 $$ \le $$ y $$ \le $$ x2} is
A
$$8{\log _e}2 - {{14} \over 3}$$
B
$$8{\log _e}2 - {{7} \over 3}$$
C
$$16{\log _e}2 - {{14} \over 3}$$
D
$$16{\log _e}2 - 6$$
4
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let $$\Gamma $$ denote a curve y = y(x) which is in the first quadrant and let the point (1, 0) lie on it. Let the tangent to I` at a point P intersect the y-axis at YP. If PYP has length 1 for each point P on I`, then which of the following options is/are correct?
A
$$xy' + \sqrt {1 - {x^2}} = 0$$
B
$$xy' - \sqrt {1 - {x^2}} = 0$$
C
$$y = {\log _e}\left( {{{1 + \sqrt {1 - {x^2}} } \over x}} \right) - \sqrt {1 - {x^2}} $$
D
$$y = - {\log _e}\left( {{{1 + \sqrt {1 - {x^2}} } \over x}} \right) + \sqrt {1 - {x^2}} $$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12