A block of mass 2 kg is free to move along the x-axis. It is at rest and from t = 0 onwards, it is subjected to a time-dependent force F(t) in the x-direction. The force F(t) varies with t as shown in the figure. The kinetic energy of the block after 4.5 s is
A block (B) is attached to two unstretched springs S1 and S2 with spring constants k and 4k respectively (see figure I). The other ends are attached to identical supports M1 and M2 not attached to the walls. The springs and supports have negligible mass. There is no friction anywhere. The block displaced towards wall 1 by a small distance x (figure II) and released. The block returns and moves a maximum distance y towards wall 2. Displacements x and y are measured with respect to the equilibrium position of the block B. The ratio $$\frac{y}{x}$$ is :
A bob of mass M is suspended by a massless string of length L. The horizontal velocity V at position A is just sufficient to make it reach the point B. The angle $$\theta$$ at which the speed of the bob is half of that at A, satisfies,