1
IIT-JEE 1996
Subjective
+3
-0
The standard reduction potential for Cu2+|Cu is +0.34 V. Calculate the reduction potential at pH = 14 for the above couple. Ksp of Cu(OH)2 is 1.0 $$\times$$ 10-19
2
IIT-JEE 1995
Subjective
+4
-0
An excess of liquid mercury is added to an acidified solution of 1.0 $$\times$$ 10-3 M Fe3+. It is found that 5% of Fe3+ remains at equilibrium at 25oC. Calculate $$E_{Hg_2^{2 + }|\,Hg}^o$$, assuming that only reaction that occurs is
2Hg + 2Fe3+ $$\to$$ $$Hg_2^{2+}$$ + 2Fe2+
(Given $$E_{F{e^{3 + }}|\,F{e^{2 + }}}^o$$ = 0.77 V)
2Hg + 2Fe3+ $$\to$$ $$Hg_2^{2+}$$ + 2Fe2+
(Given $$E_{F{e^{3 + }}|\,F{e^{2 + }}}^o$$ = 0.77 V)
3
IIT-JEE 1994
Subjective
+4
-0
The Edison storage cells is represented as
Fe(s) | FeO(s) | KOH (aq) | Ni2O3(s) | Ni(s)
The half-cell reactions are:
Ni2O3 + H2O (l) + 2e- $$\leftrightharpoons$$ 2NiO(s) + 2OH-; Eo = +0.40V
FeO(s) + H2O(l) + 2e- $$\leftrightharpoons$$ Fe(s) + 2OH-; Eo = -0.87V
(i) What is the cell reaction?
(ii) What is the cell e.m.f? How does it depend on the concentration of KOH?
(iii) What is the maximum amount of electrical energy that can be obtained from one mole of Ni2O3?
Fe(s) | FeO(s) | KOH (aq) | Ni2O3(s) | Ni(s)
The half-cell reactions are:
Ni2O3 + H2O (l) + 2e- $$\leftrightharpoons$$ 2NiO(s) + 2OH-; Eo = +0.40V
FeO(s) + H2O(l) + 2e- $$\leftrightharpoons$$ Fe(s) + 2OH-; Eo = -0.87V
(i) What is the cell reaction?
(ii) What is the cell e.m.f? How does it depend on the concentration of KOH?
(iii) What is the maximum amount of electrical energy that can be obtained from one mole of Ni2O3?
4
IIT-JEE 1994
Subjective
+3
-0
The standard reduction potential of the Ag+/Ag electrode at 298 K is 0.799V. Given that for AgI, Ksp = 8.7 $$\times$$ 10-17, evaluate the potential of the Ag+/Ag electrode in a saturated solution of AgI. Also calculate the standard reduction potential of the I-/ AgI/Ag electrode.
Questions Asked from Electrochemistry (Subjective)
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus