When an electron orbiting in hydrogen atom in its ground state jumps to higher excited state, the de-Broglie wavelength associated with it
The figure shows the variation of photocurrent with anode potential for four different radiations. Let $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{c}}$ and $\mathrm{I}_{\mathrm{d}}$ be the intensities for the curves $a, b, c$ and $d$ respectively $\left[f_a, f_b, f_c\right.$ and $f_d$ are frequencies respectively]
When a certain metallic surface is illuminated with monochromatic light wavelength $\lambda$, the stopping potential for photoelectric current is $4 \mathrm{~V}_0$. When the same surface is illuminated with light of wavelength $3 \lambda$, the stopping potential is $\mathrm{V}_0$. The threshold wavelength for this surface for photoelectric effect is
The stopping potential as a function of frequency of incident radiation is plotted for two different photoelectric surfaces A and B. The graph shows that the work function of A is