The ratio of the wavelength of a photon of energy ' $E$ ' to that of the electron of same energy is ( $\mathrm{m}=$ mass of an electron, $\mathrm{c}=$ speed of light, $\mathrm{h}=$ Planck's constant)
When photons of energy hv fall on a photosensitive surface of work function $\mathrm{E}_0$, photoelectrons of maximum energy $k$ are emitted. If the frequency of radiation is doubled the maximum kinetic energy will be equal to ( $\mathrm{h}=$ Planck's constant)
The number of photoelectrons emitted for light of frequency $v$ (higher than the threshold frequency $\left(v_0\right)$ is proportional to
The stopping potential for a photelectric emission process is 10 V . The maximum kinetic energy of the electrons ejected in the process is [Charge on electron $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$ ]