1
MHT CET 2021 20th September Morning Shift
+1
-0

When light of wavelength '$$\lambda$$' is incident on a photosensitive surface, photons of power 'P' are emitted. The number of photon 'n' emitted in time 't' is [h = Planck's constant, c = velocity of light in vacuum]

A
$$\mathrm{\frac{hc}{p\lambda t}}$$
B
$$\mathrm{\frac{P\lambda}{htc}}$$
C
$$\mathrm{\frac{P\lambda t}{hc}}$$
D
$$\mathrm{\frac{hP}{\lambda tc}}$$
2
MHT CET 2021 20th September Morning Shift
+1
-0

When a photosensitive surface is irradiated by light of wavelengths '$$\lambda_1$$' and '$$\lambda_2$$', kinetic energies of emitted photoelectrons are 'E$$_1$$' and 'E$$_2$$' respectively. The work function of photosensitive surface is

A
$$\frac{\left(\lambda_1 E_1-\lambda_2 E_2\right)}{\left(\lambda_2-\lambda_1\right)}$$
B
$$\frac{\left(\lambda_1 \mathrm{E}_1+\lambda_2 \mathrm{E}_2\right)}{\left(\lambda_2-\lambda_1\right)}$$
C
$$\frac{\left(\lambda_1 \mathrm{E}_2-\lambda_2 \mathrm{E}_1\right)}{\left(\lambda_2-\lambda_1\right)}$$
D
$$\frac{\left(\lambda_1 E_2+\lambda_2 E_1\right)}{\left(\lambda_2-\lambda_1\right)}$$
3
MHT CET 2020 16th October Morning Shift
+1
-0

The maximum velocity of the photoelectron emitted by the metal surface is $$v$$. Charge and mass of the photoelectron is denoted by $$e$$ and $$m$$, respectively. The stopping potential in volt is

A
$$\frac{v^2}{2\left(\frac{e}{m}\right)}$$
B
$$\frac{v^2}{\left(\frac{m}{e}\right)}$$
C
$$\frac{v^2}{2\left(\frac{m}{e}\right)}$$
D
$$\frac{v^2}{\left(\frac{e}{m}\right)}$$
4
MHT CET 2020 16th October Morning Shift
+1
-0

Energy of the incident photon on the metal surface is $$3 W$$ and then $$5 W$$, where $$W$$ is the work function for that metal. The ratio of velocities of emitted photoelectrons is

A
$$1: 4$$
B
$$1: 2$$
C
$$1: \sqrt{2}$$
D
$$1: 1$$
EXAM MAP
Medical
NEET